This list does not include any papers in diophantine approximation and only some of the papers related to zeta functions; see the lists on these subjects.

**Effective versions of the Chebotarev density theorem**,

J. C. Lagarias and A. M. Odlyzko,

pp. 409-464 in*Algebraic Number Fields*, A. Frohlich (ed.), Academic Press, 1977.**Succinct Certificates for the Solvability of Binary Quadratic Diophantine Equations ,**

J. C. Lagarias,

*Proc. 20th IEEE Symposium on Foundations of Computer Science*, IEEE Press 1979, pp. 47-54.**Signatures of Units and Congruences (mod 4) in Certain Real Quadratic Fields ,**

J. C. Lagarias,

*J. reine Angew. Math.*, 301 (1978), pp. 142-146.**Divisibility properties of some cyclotomic sequences**,

J. C. Lagarias and A. M. Odlyzko,

*Amer. Math. Monthly*, 87 (1980), pp. 561-564.**A bound for the least prime ideal in the Chebotarev density theorem**,

J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko,

*Inventiones math.*, 54 (1979), pp. 271-296.**Signatures of Units and Congruences (mod 4) in Certain Real Quadratic Fields II**,

J. C. Lagarias,

*J. reine angew. Math.*320 (1980), pp. 115-126.**Signatures of Units and Congruences (mod 4) in Certain Totally Real Fields**,

J. C. Lagarias,

*J. reine angew. Math.*320 (1980), pp. 1-5.**On determining the 4-rank of the ideal class group of a quadratic field**,

J. C. Lagarias,

*J. Number Theory*12 (1980), pp. 191-196.**Worst-case complexity bounds in the theory of integral quadratic forms**,

J. C. Lagarias,

*J. Algorithms*1 (1980), pp. 142-186.**On the computational complexity of determining the solvability or unsolvability of the equation X^2 - dY^2 = -1**,

J. C. Lagarias,

*Trans. Amer. Math. Soc.*260 (1980), pp. 485-508.**Fibonacci and Lucas Cubes**,

J. C. Lagarias and D. P. Weisser,

*Fibonacci Quarterly*19 (1981), pp. 39-43.**On the Density of Sequences of Integers the Sum of No Two of Which is a Square. I. Arithmetic Progressions**,

J. C. Lagarias, A. M. Odlyzko and J. B. Shearer,

*J. Combinatorial Theory, Series A*33 (1982), pp. 167-185.**On the Density of Sequences of Integers the Sum of No Two of Which is a Square. II. General Sequences**,

J. C. Lagarias, A. M. Odlyzko, and J. B. Shearer,

*J. Comb. Theory A*, 34 (1983), pp. 123-139. [PostScript]**On the existence of fields governing the 2-invariants of the classgroup of Q(sqrt(dp)) as p varies**,

H. Cohn and J. C. Lagarias,*Math. Comp.*37 (1983), pp. 711-730.**Is there a density for the set of primes p such that the class number of Q(sqrt(-p)) is divisible by 16?**,

H. Cohn and J. C. Lagarias,

in:*Topics in Classical Number Theory*,

(G. Halasz, Ed.), Colloquium Soc. Janos Bolyai No. 34, 1984, pp. 257-279.**The set of primes dividing the Lucas numbers has density 2/3**,

J. C. Lagarias,

*Pacific J. Math.*118 (1985), pp. 449-461.

[**Errata**,*Pacific J. Math.*162 (1994), pp. 393-396.]**Asymmetric Tent Maps I. Eventually Periodic Points**,

J. C. Lagarias, H. A. Porta and K. B. Stolarsky,

*J. London Math. Soc.*47 (1993), pp. 542-556.**Asymmetric Tent Maps II. Purely Periodic Points**,

J. C. Lagarias, H. A. Porta and K. B. Stolarsky,

*Illinois J. Math.*38 (1994), pp. 574-588.**On the distribution of multiplicative translates of sets of residues (mod p)**,

J. Hastad, J. C. Lagarias, and A. M. Odlyzko,

*J. Number Theory*, 46 (1994), pp. 108-122. [PostScript]**Haar Bases for L^2(R^n) and Algebraic Number Theory**,

Jeffrey C. Lagarias and Yang Wang,

*J. Number Theory*57 (1996), pp. 181-197.