2. Find all values of the parameters a and b for which the system

\[\begin{align*}
 x + ay &= 1 \\
 2x + 3y &= b
\end{align*} \]

a) has no solutions
b) has a unique solution
c) has infinitely many solutions.

Solution. Writing the system in the matrix form and reducing it, we get

\[
\begin{bmatrix}
 1 & a & 1 \\
 2 & 3 & b
\end{bmatrix} \rightarrow \begin{bmatrix}
 1 & a & 1 \\
 0 & 3 - 2a & b - 2
\end{bmatrix}.
\]

Now, if $a \neq 3/2$ then $3 - 2a \neq 0$ and we can find y from the second equation as $y = (b - 2)/(3 - 2a)$ and then find x from the first equation as $x = 1 - ay$. Hence in this case the system has a unique solution.

If $a = 3/2$ and $b \neq 2$ then the system has no solutions since the last equation reads $0 \cdot x + 0 \cdot y = b - 2 \neq 0$.

If $a = 3/2$ and $b = 2$ then the last equation reads $0 = 0$ and the system has infinitely many solutions since we can let y be any number and then find $x = 1 - ay$.

Answer.
If $a = 3/2$ and $b \neq 2$, the system has no solutions.
If $a \neq 3/2$, the system has a unique solution.
If $a = 3/2$ and $b = 2$, the system has infinitely many solutions.