Sources of Nonuniformity

Sequence of matrix functions:

\[M(\lambda) \rightarrow N(\lambda) \rightarrow \tilde{N}(\lambda) \rightarrow O(\lambda) \rightarrow \tilde{O}(\lambda) \]

Ad-hoc steps:

1. Continuum Limit of Jump Matrix: \(N(\lambda) \rightarrow \tilde{N}(\lambda) \)

2. Pointwise Asymptotics of Jump Matrix: \(O(\lambda) \rightarrow \tilde{O}(\lambda) \)

Both of these break down near \(\lambda = 0 \).
Inner Asymptotics near $\lambda = 0$

Discrepancy of approximation of $N(\lambda)$ by $\tilde{N}_{\text{out}}(\lambda)$ is the quotient $N(\lambda)\tilde{N}_{\text{out}}(\lambda)^{-1}$.

Convenient to introduce a conjugation by an explicit, holomorphic matrix $C(\lambda)$ and look at

$$F(\lambda) := C(\lambda)^{-1}N(\lambda)\tilde{N}_{\text{out}}(\lambda)^{-1}C(\lambda).$$
Exact jump relation: $F_+(\lambda) = F_-(\lambda)v_F(\lambda)$ with

$$v_F(\lambda) = \begin{cases}
\begin{bmatrix} 1 & 0 \\
-ie^{\delta/h}(\phi(\lambda)-\phi(0))/h(1-d(\lambda)) & 1
\end{bmatrix}, & \lambda \in \Gamma_{G/2}^+ \\
\begin{bmatrix} 1 & 0 \\
-ie^{-i(\theta(\lambda)-\theta(0))/h} & 1
\end{bmatrix}, & \lambda \in C_{0+}^+ \\
\begin{bmatrix} 1 & 0 \\
i e^{-i(\theta(\lambda)-\theta(0))/h} & 1
\end{bmatrix}, & \lambda \in C_{0-}^+ \\
\begin{bmatrix} 1-d(\lambda) & ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\
i e^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda)
\end{bmatrix}, & \lambda \in I_0^+
\end{cases}$$

and $v_F(\lambda) = \sigma_2v_F(\lambda^\ast)^\ast\sigma_2$.

$$\phi(\lambda) := \int_0^{iA} L^0_\eta(\lambda)\rho^0(\eta) \, d\eta + \int_0^{-iA} L^0_\eta(\lambda)\rho^0(\eta^\ast) \, d\eta + 2i\lambda x + 2i\lambda^2 t + i\pi \int_0^{iA} \rho^0(\eta) \, d\eta - g_+(\lambda) - g_-(\lambda).$$

$$d(\lambda) = 1 - \prod_{n=0}^{N-1} \frac{\lambda - \lambda_{WKB}^{n+1}}{\lambda - \lambda_{WKB}^n} \exp \left(-\frac{1}{\hbar} \left[\int_0^{iA} L^0_\eta(\lambda)\rho^0(\eta) \, d\eta + \int_{-iA}^0 L^0_\eta(\lambda)\rho^0(\eta^\ast) \, d\eta \right] \right)$$

$$\theta(\lambda) = -\pi \int_{1/\lambda} \rho(\eta) \, d\eta, \quad L^0_\eta(\lambda) := \log(-i(\lambda - \eta)) + i\pi/2, \quad e^{\delta/h} = 1 \quad \text{for} \quad \hbar = \hbar_N.$$
Approximating the Jump Matrix Near the Origin

1. Approximate $\theta(\lambda) - \theta(0)$ and $\tilde{\phi}(\lambda) - \tilde{\phi}(0)$ near the origin with the first term in their Taylor series.

2. Approximate $d(\lambda)$ uniformly away from the imaginary axis using the “ladder of eigenvalues”.

Express asymptotics in terms of a rescaled variable $\zeta = -i\rho^0(0)\lambda/h$.

Ultimately: we’ll use the approximation we are developing in place of $\tilde{N}_{\text{out}}(\lambda)$ in a neighborhood of $\lambda = 0$ of radius h^ϵ with $1/2 < \epsilon < 1$. Later: error is optimized with $\epsilon = 2/3$.

Define $u = u(x,t)$ and $v = v(x,t)$:

$$e^{(\tilde{\phi}(\lambda) - \tilde{\phi}(0))/h} = e^{u \zeta} e^{O(\lambda^2/h)} \quad e^{\pm i(\theta(\lambda) - \theta(0))/h} = e^{\pm i u \zeta} e^{O(\lambda^2/h)}$$

Take all contours except I_0^{\pm} to be straight rays (w.l.o.g.). Then replace I_0^{\pm} by their tangent rays.
The Model Riemann-Hilbert Problem Near the Origin

\[v_F(\zeta) := \begin{cases}
- i(1 - h(\zeta))e^{(u-2\pi)\zeta} & 0 \\
1 & 1
\end{cases}, \quad \arg(\zeta) = \xi, \]

\[\begin{bmatrix} 1 \\
0 \\
1 \\
0
\end{bmatrix}, \quad \arg(\zeta) = \kappa/2 + \pi/4, \]

\[\begin{bmatrix} 1 \\
0 \\
i e^{i\zeta} \\
1
\end{bmatrix}, \quad \arg(\zeta) = \kappa/2, \]

\[\begin{bmatrix} 1 - h(\zeta) & ih(\zeta)e^{-i\zeta} \\
0 & 1 + h(\zeta)
\end{bmatrix}, \quad \arg(\zeta) = \kappa. \]

\[h(\zeta) = 1 - \frac{\Gamma(1/2 + i\zeta)}{\Gamma(1/2 - i\zeta)}(-i\zeta)^{-2i\zeta}e^{2i(\pi + i)\zeta} \quad \text{and} \quad v_F(\zeta) = \sigma_2 v_F(\zeta^*)^* \sigma_2 \]

Riemann-Hilbert Problem: Find \(\hat{F}(\zeta) \) analytic in \(\mathbb{C} \setminus \Sigma_F \) with

1. \(\hat{F}(\zeta) \to \mathbb{I} \) as \(\zeta \to \infty \)

2. Continuous boundary values satisfying \(\hat{F}_+(\zeta) = \hat{F}_-(\zeta)v_F(\zeta) \).
Solvability of the Model

Fact: There is a unique solution of this Riemann-Hilbert problem with the additional property that

\[\hat{F}(\zeta) - \mathbb{I} = O(|\zeta|^{-1}). \]

Proof based on general theory of RHPs with jump matrices in Hölder spaces. Correspondence with systems of singular integral equations of Fredholm type.

Normalization matrix \(\mathbb{I} \) at infinity — an inhomogeneity. The Fredholm alternative applies because

1. \(v_F(\zeta) \) is Hölder continuous (but not Lipschitz) on each ray.

2. \(v_F(\zeta) - \mathbb{I} = O(|\zeta|^{-1}) \) as \(\zeta \to \infty \).

3. Cyclic relation holds at the self-intersection point.

Unique solvability follows upon ruling out homogeneous solutions. We exploit the Schwartz reflection symmetry of \(v_F(\zeta) \) to do this.

Decay estimate for the solution at infinity: vanishing of the sum of the moments of \(v_F(\zeta) - \mathbb{I} \) over all rays.
Local Parametrix Near the Origin

The relation

\[N(\lambda) = C(\lambda)F(\lambda)C(\lambda)^{-1}\tilde{N}_{\text{out}}(\lambda) \]

holds exactly.

From \(\hat{F}(\zeta(\lambda)) \), build an approximation \(\hat{G}(\lambda) \) for \(\hat{F}(\zeta(\lambda)) \) by “unstraightening” \(I_0^\pm \) for \(|\lambda| < \hat{\epsilon}^{2/3}\).

Since \(\hat{G}(\lambda) \) is expected to be a good approximation to \(F(\lambda) \), we build an improved approximation to \(N(\lambda) \) valid near \(\lambda = 0 \) by setting

\[\hat{N}_{\text{origin}}(\lambda) := C(\lambda)\hat{G}(\lambda)C(\lambda)^{-1}\tilde{N}_{\text{out}}(\lambda) \]
Variational Theory of the Complex Phase

Green’s function for upper half-plane: \(G(\lambda; \eta) := \log \left| \frac{\lambda - \eta^*}{\lambda - \eta} \right| \)

External field:

\[
\varphi(\lambda) := - \int G(\lambda; \eta) \, d\mu^0(\eta) - \Re \left(i\pi \sigma \int_{\lambda}^{iA} \rho^0(\eta) \, d\eta + 2iJ(\lambda x + \lambda^2 t) \right)
\]

\(d\mu^0 = \) nonnegative asymptotic WKB eigenvalue measure on \([0, iA]\)

Energy functional: \(E[d\mu] := \frac{1}{2} \int d\mu(\lambda) \int G(\lambda; \eta) \, d\mu(\eta) + \int \varphi(\lambda) \, d\mu(\lambda) \)
Equilibrium Property

Theorem 1 Let \(\rho(\eta) \) be an admissible density function on the oriented loop contour \(C \) surrounding \([0, iA]\). Then

\[
E[-\rho(\eta) \, d\eta] = \inf_{d\mu} E[d\mu]
\]

where the infimum is taken over all nonnegative Borel measures supported on \(C \) and having finite mass and finite Green’s energy.

Idea of proof: let \(d\Delta(\eta) := d\mu(\eta) + \rho(\eta) \, d\eta \). Then

\[
E[d\mu] - E[-\rho(\eta) \, d\eta] = \frac{1}{2} \int d\Delta(\lambda) \int G(\lambda; \eta) \, d\Delta(\eta) + \int \Re(\bar{\phi}(\lambda)) \, d\Delta(\lambda)
\]

1. First term is nonnegative because positive and negative parts of \(d\Delta \) have finite mass and Green’s energy.

2. Second term is nonnegative because:
 (a) \(\Re(\bar{\phi}(\lambda)) \equiv 0 \) when \(\lambda \) is in the support of \(\rho(\eta) \, d\eta \)
 (b) \(\Re(\bar{\phi}(\lambda)) \leq 0 \) when \(\lambda \) is outside the support of \(\rho(\eta) \, d\eta \), and consequently where \(d\Delta(\lambda) = d\mu(\lambda) \geq 0 \).
S-Property

Theorem 2 Let \(\rho(\eta) \) be an admissible density function on an oriented loop contour \(\gamma \) surrounding \([0, iA]\). For each \(\kappa(\eta) \) analytic in the support of \(-\rho(\eta) \, d\eta \) on \(\gamma \) and satisfying \(\kappa(0) = 0 \) and for each sufficiently small \(\epsilon \) let \(d\mu^\kappa_\epsilon \) be the pull-back of the measure \(-\rho(\eta) \, d\eta \) under the near-identity map

\[
\nu^\kappa_\epsilon : \eta \rightarrow \eta + \epsilon \kappa(\eta).
\]

Then

\[
\frac{d}{d\epsilon} E[d\mu^\kappa_\epsilon] \bigg|_{\epsilon=0} = 0.
\]

Idea of proof: Using the pull-back property,

\[
E[d\mu^\kappa_\epsilon] = \frac{1}{2} \int d \mu^\kappa_0(\lambda) \int G(\nu^\kappa_\epsilon(\lambda); \nu^\kappa_\epsilon(\eta)) \, d\mu^\kappa_0(\eta) + \int \varphi(\nu^\kappa_\epsilon(\lambda)) \, d\mu^\kappa_0(\lambda)
\]

where \(d\mu^\kappa_0(\eta) = -\rho(\eta) \, d\eta \). Find that

\[
\frac{d}{d\epsilon} E[d\mu^\kappa_\epsilon] \bigg|_{\epsilon=0} = - \int \Re \left[\kappa(\lambda) \frac{d}{d\lambda} \tilde{\phi}(\lambda) \right] \, d\mu^\kappa_0(\lambda)
\]

which vanishes because \(\tilde{\phi}(\lambda) \) is a constant function along the contour in the support of \(-\rho(\eta) \, d\eta \).
Nature of the Critical Point. Max-Min Problem.

Energy functional is:

1. Minimized by $-\rho(\eta)\,d\eta$ over measures supported on the fixed contour C.

2. Stationary with respect to deformations of C with the measure “held fixed”.

Can assign an equilibrium energy $E_{\min}[C]$ to arbitrary loop contours C. But property 2 not necessarily equivalent to $E_{\min}[C]$ being stationary with respect to deformations of C.

Want to pose a “max-min” problem: For each contour C find the equilibrium energy $E_{\min}[C]$ over all positive Borel measures $d\mu$ supported on C. Then pick C so as to maximize $E_{\min}[C]$.

Generalization of the method of Lax and Levermore for zero dispersion Korteweg-de Vries. But, energy problem does not play as central a role in our analysis. Further understanding is required.

We hope: study of the variational problem will provide existence, uniqueness, and regularity (finite number of bands and gaps) for the complex phase. A “hunting licence”. Maybe an upper bound on the number of bands.
Seeking the Complex Phase by Ansatz

Suppose that C passes through iA and all bands lie on one half, C_I:

Guess a number of bands and gaps on C_I ($2G + 2$ complex endpoints, in conjugate pairs, with G even), and seek scalar $F(\lambda)$ analytic in $\mathbb{C} \setminus (C_I \cup C_I^*)$ satisfying

$$F(\lambda^*) = -F(\lambda)^* \quad \text{and} \quad F(\lambda) = O(1/\lambda) \quad \text{as} \quad \lambda \to \infty$$

and on C_I,

$$F_+(\lambda) + F_-(\lambda) = -4iJ(x + 2\lambda t), \quad \lambda \text{ in a band}$$

$$F_+(\lambda) - F_-(\lambda) = -2\pi i \rho^0(\lambda), \quad \lambda \text{ in a gap}$$
Then get a “candidate density function” via

\[\rho(\eta) = \rho^0(\eta) + \frac{1}{2\pi i} (F_+(\eta) - F_-(\eta)) . \]

1. Consistency of this procedure imposes \(G + 1 \) real “moment conditions” on the endpoints.

2. Procedure guarantees only that \(\rho(\eta) \equiv 0 \) in the gaps and \(\tilde{\phi}(\lambda) \) is constant in the bands.

3. \(G/2 \) additional real “vanishing conditions” may be imposed to ensure that \(\tilde{\phi}(\lambda) \) is purely imaginary in the bands.

4. \(G/2 + 1 \) additional real “measure reality conditions” are required if \(\rho(\eta) \, d\eta \) is to be real in the bands (i.e. for \(\theta(\eta) \) to be real).

Total of \(2G + 2 \) real conditions on \(2G + 2 \) independent real unknowns.
Once $F(\lambda)$ is found, pull contour C away from iA:

Finally verify:

1. That there are actually contours connecting the band endpoints along which $\rho(\eta) \, d\eta$ is real,

2. That the inequalities $\Re(\tilde{\phi}(\lambda)) < 0$ in gaps and $\rho(\eta) \, d\eta < 0$ in bands are satisfied.

These conditions would select the genus G as a function of x and t.
Genus Zero

Only one complex endpoint $\lambda_0 = a_0 + ib_0 \in \mathbb{C}_+$ and two real conditions:

$$M_0 = -2J\pi(x + 2a_0 t) + 2\Re \left(\int_{\lambda_0}^{iA} \frac{i\pi \rho^0(\eta)}{R(\eta)} d\eta \right) = 0$$

$$R_0 = -Jtb_0^2 + \Im \left(\int_{\lambda_0}^{iA} \rho^0(\eta) \frac{\partial R}{\partial \eta}(\eta) d\eta \right) = 0$$

Here $R(\eta)^2 = (\eta - \lambda_0)(\eta - \lambda_0^*)$, branch cut along the bands I_0^\pm and $R(\eta) \sim -\eta$ as $\eta \to \infty$.
The \(G = 0 \) Ansatz for \(t = 0 \)

Using formula for \(\rho^0(\eta) \) in terms of \(A(x) \) one finds that for \(t = 0 \)

\[
a_0(x) = 0 \quad \text{and} \quad b_0(x) = A(x)
\]

follow from the conditions \(M_0 = R_0 = 0 \).

Deform, respecting \(\Re(\tilde{\phi}(\lambda)) < 0 \) in the gaps:
Small Time Results

Theorem 3 Let $A(x)$ be real-analytic, even, and monotone decreasing in $|x|$. Then for each fixed $x \neq 0$, a genus zero ansatz satisfies all properties of a complex phase function for t sufficiently small.

Idea of proof:

1. Use properties of $A(x)$ to compute the Jacobian of the transformation $(\lambda_0, \lambda_0) \rightarrow (M_0, R_0)$ and show it is nonzero for $t = 0$. This shows persistence of the endpoints for t small.

2. Appeal to a fixed-point argument showing the persistence of the contour band and gaps for t small. Show that the ansatz can be rigged so that the band moves away from $[0, iA]$.

Theorem 4 For sufficiently small t, the semiclassical soliton ensemble $\psi(x,t)$ associated with $A(x)$ is pointwise $\hbar^{1/3}$-close to $\tilde{\psi}(x,t) := A(x,t)e^{iS(x,t)}$ where $A(x,t)$ and $S(x,t)$ are the unique analytic solutions of the genus zero elliptic modulation equations with initial data $A(x,0) = A(x)$ and $S(x,0) = 0$.

17
Finite \(t \) with \(A(x) = \text{Asech}(x) \)

About the endpoint \(\lambda_0 = a_0 + ib_0 \):

- Reality condition \(R_0 = 0 \) consistent only if \(\sigma J t \geq 0 \), and then

\[
a_0^2 = t^2 b_0^4 \frac{A^2 - b_0^2 + t^2 b_0^4}{A^2 + t^2 b_0^4}
\]

- Two solutions for the endpoint \(\lambda_0(x, t) \), in left/right half-planes. One at infinity when \(t = 0 \).

Computer-assisted exploration. For given \((x, t) \), chose one of the two possible endpoints. Then construct the candidate density \(\rho(\eta) \) and

1. Numerically follow the orbit \(\rho(\eta) \, d\eta < 0 \) from the origin and see whether it makes it to \(\lambda_0 \) safely. This determines whether the band \(I_0^+ \) can exist.

2. If \(I_0^+ \) exists, numerically construct \(\Re(\tilde{\phi}(\lambda)) \) and see where it is negative. Determine whether the contour \(C \) can be closed around \([0, iA] \) in such a region.
Comparing the two possible endpoints before breaktime:

And after breaktime:
Breakdown of the ansatz: Failure of inequality in the gaps.

“Dual” ansatz: reverse roles of bands and gaps!
Another example of inequality failure in the gaps. No dual ansatz.
Complete scan of the \((x,t)\)-plane:
Modes of Failure of the Ansatz. Phase Transition.

The ansatz can fail at some \((x,t)\) in several ways:

1. The region admitting a gap contour can “pinch off”.
2. A complex zero of \(\rho(\eta)\) can move onto a band.
3. A band can strike the interval \([0, iA]\).
4. The endpoint functions can fail to be analytic.

Apparently the ansatz can be chosen so that case 1 is the mode of failure.

Theorem 5 If the genus zero ansatz fails at a point \((x_{\text{crit}}, t_{\text{crit}})\) due to the pinching off of a gap at a point \(\hat{\lambda}\) (not in the shadow of \(I_0^+\)) then for \(|x| - |x_{\text{crit}}| < 0\) and small enough in magnitude, a genus two ansatz suffices to generate a complex phase function.