Math 632. Homework Set 2

Solutions are due Thursday, February 18th.

As usual, all schemes are assumed of finite type over k.

Problem 1. Let X be a scheme, and \mathcal{F} a quasicoherent sheaf on X.

i) Show that if $(\mathcal{F}_i)_i$ is a family of \mathcal{O}_X-submodules of \mathcal{F}, then we have an \mathcal{O}_X-submodule $\bigcap_i \mathcal{F}_i$ of \mathcal{F} given by

$$\Gamma(U, \bigcap_i \mathcal{F}_i) = \bigcap_i \Gamma(U, \mathcal{F}_i).$$

ii) Show that if all \mathcal{F}_i are quasicoherent, and the family is finite, then $\bigcap_i \mathcal{F}_i$ is quasi-coherent. Give an example to show that this is not necessarily true if the family is infinite.

iii) Use this to give a new proof of the fact that if $(Y_i)_i$ is a finite family of closed subschemes of X, then there is a unique smallest closed subscheme $\bigcup_i Y_i$ of X with the property that each Y_i is a closed subscheme of $\bigcup_i Y_i$.

Problem 2. Let X be a scheme, and \mathcal{F} a quasicoherent sheaf on X.

i) Suppose that $(\mathcal{F}_i)_i$ is a family of quasicoherent \mathcal{O}_X-submodules of \mathcal{F}. Show that if $\sum_i \mathcal{F}_i$ is the sheaf associated to the presheaf \mathcal{P} given by $\Gamma(U, \mathcal{P}) = \sum_i \Gamma(U, \mathcal{F}_i)$, then $\sum_i \mathcal{F}_i$ is a quasicoherent \mathcal{O}_X-submodule of \mathcal{F}. Furthermore, show that if $U \subseteq X$ is an affine open subset, then $\Gamma(U, \sum_i \mathcal{F}_i) = \sum_i \Gamma(U, \mathcal{F}_i)$.

ii) Use this to give a new proof of the fact that if $(Y_i)_i$ is a family of closed subschemes of X, then there is a unique largest closed subscheme $\bigcap_i Y_i$ of X with the property that it is a closed subscheme of each of the Y_i.

Problem 3. Let X be a scheme. Show that if

$$0 \rightarrow \mathcal{F}' \rightarrow \mathcal{F} \rightarrow \mathcal{F}'' \rightarrow 0$$

is an exact sequence of \mathcal{O}_X-modules on X and if \mathcal{F}' and \mathcal{F}'' are (quasi)coherent, then so is \mathcal{F}.

Problem 4. Prove that if $f : X \rightarrow Y$ is a morphism of schemes, and if \mathcal{F} is a quasicoherent sheaf on X, and \mathcal{E} is a locally free sheaf on Y, then there is a canonical isomorphism

$$f_*(\mathcal{F} \otimes_{\mathcal{O}_X} f^*(\mathcal{E})) \cong f_*(\mathcal{F}) \otimes_{\mathcal{O}_Y} \mathcal{E}.$$

This is the **projection formula**.

Problem 5. Let X be a topological space. Show that if

$$0 \rightarrow \mathcal{F}' \xrightarrow{u} \mathcal{F} \xrightarrow{v} \mathcal{F}'' \rightarrow 0$$

is an exact sequence of \mathcal{O}_X-modules on X and if \mathcal{F}' and \mathcal{F}'' are (quasi)coherent, then so is \mathcal{F}.
is an exact sequence of sheaves of abelian groups on X such that \mathcal{F}' is flasque, then the following sequence is exact

$$0 \to \Gamma(X, \mathcal{F}') \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}'') \to 0.$$

(Hint: given $s'' \in \Gamma(X, \mathcal{F}'')$, consider the set

$$\{(U, s) \mid U \text{ open in } X, s \in \mathcal{F}(U), v(s) = s''|_{U}\}$$

ordered by $(U, s) \leq (V, t)$ if $U \subseteq V$ and $t|_{U} = s$. Show that this set has a maximal element and that if \mathcal{F}' is flasque and (V, t) is maximal, then $V = X$).

Problem 6. Let (X, \mathcal{O}_X) be a ringed space.

1. If U is an open subset of X and $i: U \to X$ the inclusion, show that there is a sub-\mathcal{O}_X-module $i_!(\mathcal{O}_U)$ of \mathcal{O}_X such that $i_!(\mathcal{O}_U)(V) = \mathcal{O}_X(V)$ if $V \subseteq U$, and $i_!(\mathcal{O}_U)(V) = 0$, otherwise.
2. Show that if $x \in U$, then we have a canonical isomorphism $\mathcal{O}_{U,x} \simeq i_!(\mathcal{O}_U)_x$ and if $x \notin U$, then $i_!(\mathcal{O}_U)_x = 0$. The sheaf $i_!(\mathcal{O}_U)$ is called the *extension by zero* of \mathcal{O}_U.
3. Show that for every \mathcal{O}_X-module \mathcal{F}, we have a canonical isomorphism

$$\text{Hom}_{\mathcal{O}_X}(i_!(\mathcal{O}_U), \mathcal{F}) \simeq \mathcal{F}(U).$$

4. Deduce that if \mathcal{I} is an injective \mathcal{O}_X-module, then it is flasque.
5. Give an example of a scheme X and an open subset U such that $i_!(\mathcal{O}_U)$ is not quasicoherent.