Homework Set 4

Solutions are due Monday, November 23rd.

As usual, all our schemes are assumed to be of finite type over an algebraically closed field \(k \).

Problem 1.

i) Let \(f : Y \to X \) be a closed immersion of schemes. Show that for every scheme \(Z \), the induced map \(\text{Hom}(Z,Y) \to \text{Hom}(Z,X) \) (where we denote by \(\text{Hom} \) the set of scheme morphisms) is injective.

ii) Show that if \(f \) is as above, and if \(g : Z \to X \) is a morphism of schemes such that the set-theoretic image of \(g \) is contained in the set-theoretic image of \(f \), then it does not necessarily follow that there is a morphism \(h : Z \to Y \) such that \(f \circ h = g \).

Problem 2. Given two closed immersions \(i_1 : Y_1 \to X \) and \(i_2 : Y_2 \to X \), we put \(i_1 \leq i_2 \) if there is a morphism of schemes \(f : Y_1 \to Y_2 \) such that \(i_2 \circ f = i_1 \) (note that in this case \(f \) is unique by the previous problem). This defines an order relation on the closed immersions into \(X \).

i) Show that if \(f \) is as above, then \(f \) is a closed immersion.

ii) Show that if \(i_1 \leq i_2 \) and \(i_2 \leq i_1 \), then the above \(f \) is an isomorphism (in this case, we say the \(i_1 \) and \(i_2 \) are equivalent).

iii) Show that we can identify the closed subschemes of \(X \) with the equivalence classes with respect to this equivalence relation.

Problem 3.

i) If \(Y \) is a closed subscheme of \(X \), and if \(U \) is open in \(X \), then \(U \cap Y \) has a natural scheme structure as open subscheme of \(Y \). Show that with this scheme structure, \(U \cap Y \) is a closed subscheme of \(U \).

ii) A morphism \(f : Z \to X \) is a locally closed immersion if it factors as \(Z \xrightarrow{i} W \xrightarrow{j} Y \), where \(i \) is a closed immersion and \(j \) is an open immersion. Deduce from i) that the class of locally closed immersions is closed under composition.

Problem 4. Prove the following criterion for gluing closed subschemes. Suppose that \(X \) is a scheme, and that we have an open cover \(X = \bigcup_i U_i \). Suppose that for every \(i \) we have a closed subscheme \(Y_i \) of \(U_i \), such that for all \(i \) and \(j \) we have \(Y_i \cap U_j = Y_j \cap U_i \) (as closed subschemes of \(U_i \cap U_j \)). Show that in this case there is a unique closed subscheme \(Y \) of \(X \) such that for every \(i \), \(Y \cap U_i = Y_i \) as closed subschemes of \(U_i \).
Problem 5. Let X be a scheme, and $Y \subseteq X$ a closed subset.

i) Show that there is at most one closed subscheme of X that is reduced, and whose support is equal to Y.

ii) Show that there is a closed subscheme of X, denoted Y_{red}, as in i). Hint: show this first for the affine open subsets of X, and then glue the corresponding closed subschemes using the previous problem, and i).

iii) Show that given any closed subscheme Z of X whose support contains Y, we have $Y_{\text{red}} \leq Z$ (in the sense of Pb. 2).

iv) If Y' is another closed subscheme of X with support Y, then we have a surjection of sheaves $\mathcal{O}_{Y'} \to \mathcal{O}_{Y_{\text{red}}}$. Show that there is an isomorphism of $\mathcal{O}_{Y_{\text{red}}}$ with the image of the morphism of sheaves $\phi: \mathcal{O}_{Y'} \to \mathcal{C}_Y$, where \mathcal{C}_Y is the sheaf of continuous functions on Y with values in k, and $\phi(u) = \tilde{u}$.

Problem 6. Show that taking X to X_{red} extends to a functor from the category of schemes to itself.

Problem 7. Let Y be a scheme and $\{Y_\alpha\}_\alpha$ a family of closed subschemes of Y. Show that there is a unique closed subscheme of Y that is contained in all Y_α and which is maximal with this property. This is usually denoted by $\cap_\alpha Y_\alpha$. Hint: do the construction locally, and use the gluing method from Problem 4).

Problem 8. Let Y_1, \ldots, Y_n be closed subschemes of a scheme Y. Show that there is a unique minimal element in the set of all closed subschemes of Y that contain all the Y_i. This is denoted by $Y_1 \cup \ldots \cup Y_n$. Hint: use the same method as in the previous problem.