Math 632. Homework Set 4

Solutions are due Tuesday, April 6.

All our schemes are of finite type over an algebraically closed field k.

Problem 1. Show that every automorphism $\phi: \mathbb{P}^n \to \mathbb{P}^n$ is linear, that is, it is induced by an element of PGL_n.

Problem 2. Let \mathcal{L}_1 and \mathcal{L}_2 be two line bundles on the scheme X.

i) Show that if \mathcal{L}_1 is ample and \mathcal{L}_2 is generated by global sections, then $\mathcal{L}_1 \otimes \mathcal{L}_2$ is ample.

ii) Show that if \mathcal{L}_1 is ample, then for any \mathcal{L}_2 we have $\mathcal{L}_1^m \otimes \mathcal{L}_2$ ample if $m \gg 0$.

iii) Show that if both \mathcal{L}_1 and \mathcal{L}_2 are ample, then so is $\mathcal{L}_1 \otimes \mathcal{L}_2$.

iv) Show that if \mathcal{L}_1 is very ample, and \mathcal{L}_2 is generated by global sections, then $\mathcal{L}_1 \otimes \mathcal{L}_2$ is very ample.

v) Show that if \mathcal{L}_1 is ample, then $\mathcal{L}_1^\otimes m$ is very ample for $m \gg 0$.

Problem 3. Let $X = \mathbb{P}^m \times \mathbb{P}^n$ be a product of projective spaces, and let $p: X \to \mathbb{P}^m$ and $q: X \to \mathbb{P}^n$ be the two projections.

i) Show that every line bundle \mathcal{L} on X is isomorphic to $p^*\mathcal{O}_{\mathbb{P}^m}(a) \otimes q^*\mathcal{O}_{\mathbb{P}^n}(b)$ for unique $a, b \in \mathbb{Z}$ (in this case one says that \mathcal{L} has type (a, b)).

ii) Show that a line bundle of type (a, b) is ample if and only if $a, b > 0$.

Problem 4. Show that if X and Y are nonsingular complete connected curves (that is, schemes of dimension one), then X and Y are birational if and only if they are isomorphic.

Problem 5. Prove that a scheme X is affine if and only if the structure sheaf \mathcal{O}_X is ample.

Problem 6.

i) Show that if $f: X \to Y$ is a finite morphism of complete varieties, and \mathcal{L} is an ample line bundle on Y, then $f^*(\mathcal{L})$ is ample on X.

ii) Deduce that the normalization of a projective variety is projective.

iii) For extra credit, prove the converse of the assertion in i): if $f: X \to Y$ is a finite surjective morphism, and \mathcal{L} is a line bundle on Y such that $f^*(\mathcal{L})$ is ample on X, then \mathcal{L} is ample.