Problem session 3

Problem 1. Let X be a quasiaffine variety, and let X_1, \ldots, X_r be its irreducible components. Show that there is a canonical isomorphism

$$K(X) \simeq K(X_1) \times \cdots \times K(X_r).$$

Problem 2. Let $f: X \to Y$ be a birational map between the quasiaffine varieties X and Y. Show that there are open subsets $U \subseteq X$ and $V \subseteq Y$ such that f induces an isomorphism $U \simeq V$.

Problem 3. Show that \mathbb{A}^1 is not isomorphic to any proper open subset of itself.

Problem 4. Let X be the nodal curve

$$X = \{(u, v) \in \mathbb{A}^2 \mid u^2 = v^2(v + 1)\}.$$

Show that X is birational to \mathbb{A}^1, but that it is not isomorphic to \mathbb{A}^1. Hint: for the first part, consider the lines through the origin, and the their intersection with the curve; for the second part, you may consider the elements in $K(X)$ that are integral over $\mathcal{O}(X)$.

Prove the same facts for the cuspidal curve

$$Y = \{(u, v) \in \mathbb{A}^2 \mid u^2 = v^3\}.$$