Problem session 5

Problem 1. Let $f : X \rightarrow Y$ be a morphism of algebraic varieties. Suppose that Y is irreducible, and that all fibers of f are irreducible, of the same dimension d (in particular, f is surjective).

i) There is a unique irreducible component of X that dominates Y.
ii) Every irreducible component X_i of X is a union of fibers of f. Its dimension is equal to $\dim(f(X_i)) + d$.

In particular, we can conclude that X is irreducible if either of the following holds:

a) X is pure-dimensional.
b) f is closed, that is, for every W closed in X, its image $f(W)$ is closed in Y.

Let X be a topological space. A subset of X is constructible if it can be written as a finite union of locally closed subsets of X.

Problem 2. Let X be a Noetherian topological space.

i) Show that the set of constructible subsets of X is closed under finite unions, finite intersections, and taking complements (it is the smallest such set containing all open subsets of X).
ii) Show that if W is constructible in X, then there is $U \subseteq W$, such that U is open in \overline{W} (in particular, U is a locally closed subset of X).

The importance of the above notion comes from the following theorem of Chevalley, that we will prove in class.

Theorem. If $f : X \rightarrow Y$ is any morphism of algebraic varieties, then for every constructible subset $W \subseteq X$, its image $f(W)$ is constructible. In particular, $f(X)$ is constructible.

Problem 3. Let G be a linear algebraic group, acting algebraically on a variety X. Show that for every point $p \in X$, its orbit $G \cdot p$ is a locally closed subset of X.

Problem 4. Show that if $f : X \rightarrow Y$ is a birational morphism of (quasi-affine) algebraic varieties, then there is an open subset $W \subseteq Y$ such that the induced map $f^{-1}(W) \rightarrow W$ is an isomorphism.