Problem session 8

While we will not mention this explicitly in what follows, all schemes are assumed to be of finite type over an algebraically closed field \(k \).

Problem 1. Let \(X \) and \(Y \) be two locally ringed spaces over \(k \), and let \(X = U_1 \cup \ldots \cup U_r \) be an open cover of \(X \).

i) Show that if \(f, g: X \to Y \) are two morphisms such that \(f|_{U_i} = g|_{U_i} \) for all \(i \), then \(f = g \) (for any open subset \(U \) of \(X \), and any morphism \(h: X \to Y \), we denote by \(h|_U \) the composition of \(h \) with the morphism \(i: U \to X \) induced by inclusion).

ii) Show that if we have morphisms \(h_i: U_i \to Y \) such that \(h_i|_{U_i \cap U_j} = h_j|_{U_i \cap U_j} \) for all \(i \) and \(j \), then there is a unique morphism \(h: X \to Y \) such that \(h|_{U_i} = h_i \) for every \(i \).

Problem 2.

i) Let \(X \) be a scheme, and \(i: W \to X \) an open immersion. Show that if \(f: Y \to X \) is a morphism of schemes such that \(f(Y) \subseteq i(W) \), then there is a unique morphism of schemes \(g: Y \to W \) such that \(i \circ g = f \).

ii) Deduce that if \(f: Y \to X \) is a morphism of schemes, and if \(U \) is an open subscheme of \(X \), then we have an induced morphism of schemes \(f^{-1}(U) \to U \).

Problem 3. Let \(f: X \to Y \) be a morphism of schemes. If there is an open cover \(Y = V_1 \cup \ldots \cup V_r \) such that the induced morphism \(f^{-1}(V_i) \to V_i \) is an isomorphism for every \(i \), then \(f \) is an isomorphism.

Problem 4. Show that if \(X \) is an affine scheme, then for every scheme \(Y \) the canonical map

\[
\text{Hom}(Y, X) \to \text{Hom}_{k-\text{alg}}(\mathcal{O}(X), \mathcal{O}(Y))
\]

is a bijection. (You may assume you know this when also \(Y \) is affine, as we will prove this in class).