Problem session 8

As usual, all schemes are assumed to be of finite type over an algebraically closed field \(k \).

Problem 1. Blow-ups appear naturally when resolving indeterminacies of rational maps, as follows. Suppose that \(\mathcal{L} \) is a line bundle on an integral scheme \(X \), and \(V \subseteq \Gamma(X, \mathcal{L}) \) is a finite dimensional linear subspace, defining the rational map \(\varphi = \varphi_V : X \dashrightarrow \mathbb{P}(V) \).

i) Show that if \(Z \) is the base locus of \(V \) (with the corresponding scheme structure), and if \(\pi : \text{Bl}_Z X \to X \) is the blow-up of \(X \) along \(Z \), then the rational map \(\varphi \circ \pi^{-1} \) is in fact a morphism.

ii) In general, if \(h : X \dashrightarrow Y \) is a rational map between the integral schemes \(X \) and \(Y \), with \(Y \) separated, then the graph \(\Gamma_h \) of \(h \) is defined as follows: if \(U \subset X \) is an open subset of \(X \) on which \(h \) is defined, then \(\Gamma_h \) is the closure in \(X \times Y \) of the graph of \(h : U \to Y \) (check that this definition is independent of \(U \)). Show that if \(\varphi \) is as above, then \(\text{Bl}_Z(X) \) is isomorphic to the graph of \(\varphi \).

Problem 2. If \(Y \) is a scheme, and \(y \in Y \) is a point defined by \(m_y \), then the (abstract) tangent cone of \(Y \) at \(y \) is \(C_y Y := \text{Spec}(\oplus_{i \geq 0} m^i/m^{i+1}) \), and the projectivized tangent cone of \(Y \) at \(y \) is \(P(C_y Y) := \text{Proj}(\oplus_{i \geq 0} m^i/m^{i+1}) \) (hence \(P(C_y Y) \) is isomorphic to the inverse image of \(y \) in \(\text{Bl}_y(Y) \)). Suppose now that \(Y \) is a closed subscheme of \(X = \mathbb{A}^n \) (more generally, a similar discussion holds if we only assume \(X \) nonsingular).

i) Show that we have a closed immersion \(P(C_y Y) \hookrightarrow P(C_y \mathbb{A}^n) \cong \mathbb{P}^{n-1} \). The affine cone over the image is the embedded tangent cone to \(Y \) at \(y \).

ii) Show that the tangent cone of \(Y \) at \(y \) has dimension equal to \(\dim(\mathcal{O}_{Y,y}) \).

iii) Show that if \(Y \) is a hypersurface in \(\mathbb{A}^n \) defined by \(f = 0 \), and if \(f = f_m + f_{m+1} + \ldots + f_d \), with \(\deg(f_i) = i \) and \(f_m \neq 0 \), then \(C_0 Y \) is defined in \(\mathbb{A}^n \) by the ideal \((f_m) \).

iv) Show that more generally, if for \(f \) as above we put \(\text{in}(f) = f_m \), then for every closed subscheme \(Y \) of \(\mathbb{A}^n \) the ideal defining \(C_0 Y \) is generated by those \(\text{in}(f) \) for all \(f \) in the ideal defining \(Y \) (note: it is not enough to only consider a system of generators of the ideal defining \(Y \)).

v) Show that the embedded tangent cone of \(Y \) at \(y \) is contained in the tangent space of \(Y \) at \(y \).