Homework Set 10

Solutions are due Friday, December 7th.

Problem 1. Let \(f : X \to Y \) be a dominant morphism between irreducible algebraic varieties. One says that \(f \) is *generically finite* if there are nonempty open subsets \(U \subseteq X \) and \(V \subseteq Y \) such that \(f \) induces a finite morphism \(U \to V \).

1) Show that \(f \) is generically finite if and only if \(\dim(X) = \dim(Y) \).
2) Show that if \(f \) is generically finite, then in fact there is a nonempty open subset \(V \subseteq Y \) such that the induced morphism \(f^{-1}(V) \to V \) is finite.

Problem 2. Let \(X \) and \(Y \) be algebraic varieties, and \(x \) and \(y \) be points on \(X \) and \(Y \), respectively.

1) Show that there is a canonical isomorphism \(T_{x,y}X \times Y \cong T_xX \times T_yY \).
2) Deduce that \((x, y) \in X \times Y \) is a nonsingular point if and only if \(x \in X \) and \(y \in Y \) are both nonsingular points.

Problem 3. Let \(G \) be a linear algebraic group acting on the variety \(X \). Show that every orbit of \(G \) in \(X \) is nonsingular.

The following is a very useful interpretation of the tangent space at a point.

Problem 4. Let \(X \) be an affine algebraic variety, and \(x \in X \) a point. Show that the tangent space \(T_xX \) is in natural bijection with the set of \(k \)-algebra homomorphisms \(f : \mathcal{O}(X) \to k[t]/(t^2) \) with the property that if \(p : k[t]/(t^2) \to k \) is the canonical surjection, then \(p \circ f \) is the map to \(k \) corresponding to \(x \in X \).

Problem 5. Recall that \(D_r(m, n) \subseteq M_{m,n}(k) \) denotes the set of matrices \(A \) such that \(\text{rk}(A) \leq r \).

1) Show that the group \(\text{Gl}_m(k) \times \text{Gl}_n(k) \) has a natural action on \(M_{m,n}(k) \) such that the orbits are the sets \(D_r(m, n) \setminus D_{r-1}(m, n) \). Deduce that every point in \(D_r(m, n) \setminus D_{r-1}(m, n) \) is a nonsingular point of \(D_r(m, n) \).
2) Let \(A = (a_{ij}) \in D_r(m, n) \). Show that \(T_A D_r(m, n) \) is isomorphic to the vector space of matrices \(A + tB \in M_{m,n}(k[t]/(t^2)) \), having all \((r + 1) \)-minors equal to zero.
3) Deduce that if \(A \in D_{r-1}(m, n) \), then \(\dim_k T_A D_r(m, n) = mn \), hence \(A \) is a singular point of \(D_r(m, n) \).