Homework Set 6

Solutions are due Wednesday, October 31st.

Problem 1. Let X and Y be algebraic prevarieties, and let P and Q be points on X and Y, respectively.

i) Show that if $\phi: \mathcal{O}_{Y,Q} \to \mathcal{O}_{X,P}$ is a local ring homomorphism, then there are open subsets $U \subseteq X$ and $V \subseteq Y$, and a morphism $f: U \to V$ with $f(P) = Q$, such that f induces ϕ.

2) Deduce that if ϕ as above is an isomorphism, then after possibly replacing U, V by $U' \subseteq U$ and $V' \subseteq V$, we have that f is an isomorphism.

Problem 2. Let $f: X \dashrightarrow Y$ be a rational map between the irreducible varieties X and Y. The graph Γ_f of f is defined as follows. If U is an open subset of X such that f is defined on U, then the graph of $f|_U$ is well-defined, and it is a closed subset of $U \times Y$. By definition, Γ_f is the closure of the graph of $f|_U$ in $X \times Y$.

i) Show that the definition is independent of the choice of U.

ii) Let $p: \Gamma_f \to X$ and $q: \Gamma_f \to Y$ be the morphisms induced by the two projections. Show that p is a birational morphism, and that q is birational if and only if f is.

iii) Show that if the fiber $p^{-1}(x)$ does not consist of only one point, then f is not defined at $x \in X$.

Problem 3. A plane Cremona transformation is a birational map of \mathbb{P}^2 into itself. Consider the following example of quadratic Cremona transformation: $\phi: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$, given by $\phi(x: y: z) = (yz: xz: xy)$, when no two of x, y, z are zero.

1) Show that ϕ is birational, and its own inverse.

2) Find open subsets $U, V \subset \mathbb{P}^2$ such that ϕ induces an isomorphism $U \simeq V$.

3) Describe the open sets on which ϕ and ϕ^{-1} are defined.

Problem 4. Generalize the construction of the blowing-up to dimension ≥ 2, as follows. Thinking of \mathbb{P}^{n-1} as the set of lines in \mathbb{A}^n, define the blowing-up of \mathbb{A}^n at 0 as the set

$$\text{Bl}_0(\mathbb{A}^n) := \{(P, \ell) \in \mathbb{A}^n \times \mathbb{P}^{n-1} | P \in \ell\}.$$

1) Show that $\text{Bl}_0(\mathbb{A}^n)$ is a closed subset of $\mathbb{A}^n \times \mathbb{P}^{n-1}$.

2) Show that the restriction of the projection onto the first component gives a morphism $\pi: \text{Bl}_0(\mathbb{A}^n) \to \mathbb{A}^n$ that is an isomorphism over $\mathbb{A}^n \smallsetminus \{0\}$.

3) Show that $\pi^{-1}(0) \simeq \mathbb{P}^{n-1}$.

4) Show that π is a closed map.

5) Show that $\text{Bl}_0(\mathbb{A}^n)$ can be described as the graph of a suitable rational map.