The first problem requires the use of the Tor functors. We recall first their definition and the basic properties. Suppose that \(A \) is a commutative ring and \(M \) is an \(A \)-module. The functor \(M \otimes_A - \) is right exact. The category of \(A \)-modules has enough projective objects and therefore we can construct the left derived functors of the above functor. The \(i \)th derived functor is denoted by \(\text{Tor}^A_i(M, -) \).

It follows by definition that \(\text{Tor}^A_0(M, N) \simeq M \otimes_A N \) and that if we have an exact sequence of \(A \)-modules

\[
0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0
\]

then we get a long exact sequence

\[
\cdots \rightarrow \text{Tor}^A_i(M, N') \rightarrow \text{Tor}^A_i(M, N) \rightarrow \text{Tor}^A_i(M, N'') \rightarrow \text{Tor}^A_{i-1}(M, N') \rightarrow \cdots
\]

It is an easy exercise to deduce from this and from the definition of flatness that \(M \) is flat if and only if \(\text{Tor}^A_i(M, N) = 0 \) for every \(N \) and for every \(i \geq 1 \). Moreover, it is enough to have this for \(i = 1 \) and every \(N \).

The fact that the tensor product commutes with arbitrary direct sums implies that the same remains true for the Tor functors. A slightly trickier result is that we have \(\text{Tor}^A_i(M, N) \simeq \text{Tor}^A_i(N, M) \) for every \(i, M \) and \(N \). This follows using the commutativity of the tensor product and by computing Tor using free resolutions for both \(M \) and \(N \) at the same time.

The purpose of the first problem is to prove a version of the local flatness criterion.

Problem 1. Let \(A \) be a ring and \(I \) an ideal of \(A \) that is nilpotent, i.e. there is \(q \) such that \(I^q = 0 \). If \(M \) is an \(A \)-module, then the following are equivalent:

1. \(M \) is flat over \(A \).
2. \(M/IM \) is flat over \(A/I \) and the canonical morphism \(I \otimes M \rightarrow M \) is injective.

For the implication \((2) \Rightarrow (1)\), suppose that the condition in \((2)\) is satisfied.

(a) Show that \(\text{Tor}_1(M, A/I) = 0 \).
(b) Deduce that for every \(A/I \)-module \(N \) we have \(\text{Tor}_1^A(M, N) = 0 \) (hint: consider a free presentation of \(N \)).
(c) Prove now by induction on \(m \geq 1 \) that if \(N \) is an \(A \)-module annihilated by \(I^m \), then \(\text{Tor}_1^A(M, N) = 0 \).

By taking \(m = q \), we deduce that \(M \) is flat over \(A \).

Remark. There is another version of the local flatness criterion: if \((A, m) \rightarrow (B, n) \) is a local morphism of local Noetherian rings and if \(M \) is a finitely generated \(B \)-module, then the equivalence \((1) \Leftrightarrow (2)\) still holds if \(I \subseteq m \). Moreover, note that if we take \(I = m \), then \(M/IM \) is automatically flat over \(A/I \). For a proof, see Matsumura’s book.
We will use this to describe infinitesimal deformations of a scheme. Let X be a scheme of finite type over an algebraically closed field k. An infinitesimal deformation of X (over A) is a Cartesian diagram

$$
\begin{array}{ccc}
X & \longrightarrow & X' \\
\downarrow & & \downarrow \quad g \\
\text{Spec}(k) & \longrightarrow & \text{Spec}(A)
\end{array}
$$

with g flat and of finite type and where A is a finite local k-algebra (i.e. $\text{Spec}(A)$ is supported at one point).

In fact, we will be interested in embedded deformations. Suppose that X is a closed subscheme of a scheme Y of finite type over k and that A is as above. An infinitesimal embedded deformation of X (over A) is a closed subscheme $X \hookrightarrow Y \times \text{Spec}(A)$ that is flat over $\text{Spec}(A)$ and such that $X \times_{\text{Spec}(A)} \text{Spec}(k) = X$ as closed subschemes of Y.

Suppose that $\phi: A' \rightarrow A$ is a morphism of local finite k-algebras inducing $f: \text{Spec}(A) \hookrightarrow \text{Spec}(A')$. If $X \hookrightarrow Y \times \text{Spec}(A')$ is an embedded deformation of X over A' then $f^*X = X$.

Problem 2. With the above notation, suppose that $Y = \text{Spec}(R)$ is affine and that X is defined by the ideal $J \subseteq R \otimes_k A$. Let X' be a closed subscheme of $Y \times \text{Spec}(A')$ defined by the ideal $J' \subseteq R \otimes_k A'$ such that $J' \cdot (R \otimes_k A) = J$. Show that X' is flat over $\text{Spec}(A')$ if and only if the following two conditions hold for some (every) system of generators f_1, \ldots, f_r of J:

(a) We have liftings f'_i of the f_i to J' that generate J' (in fact every such liftings to J' will generate J').

(b) For every relation $\sum_i g_i f_i = 0$ with the g_i in $R \otimes_k A$ there are liftings g'_i of the g_i to $R \otimes_k A'$ such that $\sum_i g'_i f'_i = 0$.

In the next problem we use the above description of liftings to study the first-order embedded deformations of X.

Problem 3. Let X be a closed subscheme of Y. Our goal is to describe the set of embedded deformations of X over $A = k[t]/(t^2)$.

(a) Suppose first that $Y = \text{Spec}(R)$ is affine and let f_1, \ldots, f_r be generators of the ideal I of X in Y. Show that the ideal of every embedded deformation of X over $k[t]/(t^2)$ is generated by elements of the form $f_i + tg_i$ for suitable elements $g_i \in R$ with the property that the morphism $R' \rightarrow R$ taking e_i to g_i induces a morphism
of R-modules $I \to R/I$ (note that we have also a surjection $R^e \to I$ that takes each e_i to f_i).

(b) Show that two sets $\{g_i\}_i$ and $\{g'_i\}_i$ as above define the same closed subscheme of $Y \times \text{Spec}(k[t]/(t^2))$ if and only if the corresponding morphisms $I \to R/I$ are the same.

(c) Deduce that for an arbitrary Y (not necessarily affine), if \mathcal{I} is the sheaf of ideals defining X, then the set of embedded deformations of X over $k[t]/(t^2)$ is isomorphic to the space of global sections of the normal sheaf of X in Y, namely to $\text{Hom}_{\mathcal{O}_Y}(\mathcal{I}/\mathcal{I}^2, \mathcal{O}_Y)$.