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Abstract

Using Barnes-Wall lattices and 1-cocycles on finite groups of mono-
mial matrices, we give a procedure to construct tricosine spherical
codes. This was inspired by a 14-dimensional code which Ballinger,
Cohn, Giansiracusa and Morris discovered in studies of the universally
optimal property. Their code has 64 vectors and cosines −3

7 ,−1
7 , 1

7 .
We construct the Optimism Code, a 4-cosine spherical code with 256
unit vectors in 16-dimensions. The cosines are 0,±1

4 ,−1. Its automor-
phism group has shape 21+8·GL(4, 2). The Optimism Code contains
a subcode related to the BCGM code. The Optimism Code implies
existence of a nonlinear binary code with parameters (16, 256, 6), a
Nordstrom-Robinson code, and gives a context for determining its au-
tomorphism group, which has form 24:Alt7.
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1 Introduction

A spherical code is a finite set of unit vectors in Euclidean space. A cosine
of a spherical code is the inner product of distinct unit vectors in the code.
Call a spherical code n-cosine if the inner products of distinct unit vectors
form an n-set. When n = 3, we use the term tricosine.

We present a general existence criterion (2.7) for tricosine spherical codes,
based on the unidefect concept (2.5). We record an infinite series of exam-
ples and some special ones in dimensions 14 to 16. The 14-dimensional one
is isometric to a 64-point spherical code BCGM, which which was discov-
ered during a recent study of the universally optimal property. This code is
discussed later in this introduction.

We construct and analyze the Optimism Code, a spherical 4-cosine code
of 256 vectors which are 16-tuples of shape (±1

4

16
). The Optimism Code can

be used to derive all our special examples. Its existence depends on an easy
result from group extension theory.

Our procedures involve several finite groups and their 1-cocycles (also
called derivations; see (7.1)). The most important of these groups are sub-
groups of BRW+(24) ∼= 21+8Ω+(8, 2), the isometry group of the rank 16
Barnes-Wall lattice.

The Optimism Code has isometry group which is a nonsplit extension
21+8GL(4, 2). We derive existence of a nonlinear binary Nordstrom-Robinson
type code by taking signs of Optimism Code vectors. In this context, we
easily prove that the automorphism group of this binary code is isomorphic
to 24:Alt7. If we multiply the Optimism Code vectors by 2, we get a set
of 256 minimal vectors of BW24 , the standard rank 16 Barnes-Wall lattice
(which has 4320 minimal vectors). This set of norm 4 vectors spans BW24 .
Such a linkage of a Nordstrom-Robinson type binary code and the rank 16
Barnes-Wall lattice was unexpected.

This article was inspired by the spherical code BCGM found by Bran-
don Ballinger, Henry Cohn, Noah Giansiracusa and Elizabeth Morris, while
investigating the universally optimal property [7]. Their code has these prop-
erties:

BCGM1. BCGM has 64 unit vectors in dimension 14, two of which
make angles with cosines {−3

7
,−1

7
, 1

7
}.

3



BCGM2. Its isometry group H̃ has these properties:
(i) O2(H̃) is nonabelian of order 27, O2(H̃)′ = Z(O2(H̃)).

(ii) H̃/O2(H̃) ∼= GL(3, 2).
BCGM3. BCGM is an association scheme.

News of the BCGM code led us to think about connections with lattices.
The rhythm of {−3

7
,−1

7
, 1

7
} suggested the ZOPT property for the set of min-

imal vectors of Barnes-Wall lattices (ZOPT is the property of a set of vectors
that the absolute value of the inner product of any two members is zero or a
power of 2 [14]; the gaps for the set {−3

7
,−1

7
, 1

7
} of cosines suggested the gaps

in inner products {−1, 0, 1} for certain sets of norm 4 vectors in BW24). The
Barnes-Wall lattices were therefore considered a possible source of interesting
spherical codes. To search for BCGM in this context, it seemed natural to
look at BW24 , whose automorphism group is BRW+(24), which has shape

21+8
+ Ω+(8, 2) and contains many subgroups which look roughly like H̃. We

found a good subgroup and orbit of it on the minimal vectors of BW24 which
was used to make a spherical code. The isometry of our code with BCGM
follows from the recent uniqueness proof [1].

Notation and terminology follows that in [14] and [15]. The cubi theory
of [15] is recommended (see Section 3, especially 3.21 ff.). A few techniques
from group cohomology are collected in an appendix.

Table 1: Summary of our unidefect tricosine codes

(In row 1: 3 ≤ m ≤ d, 2m − 1 is a Mersenne prime and k is some integer
satisfying 1 ≤ k ≤ bd

2
c.)

Symbol Dimension Number of unit vectors Cosines

DSC2d−`,2d+m 2d − `, ` small 2m+d −2d−k−`
2d−` , −`

2d−` ,
2d−k−`

2d−`
NSC16,64 16 64 −1

4
, 0, 1

4

NSC15,64 15 64 −1
3
,− 1

15
, 1

5

NSC14,64 14 64 −3
7
,−1

7
, 1

7

NSC16,128 16 128 −1
4
, 0, 1

4

NSC15,128 15 128 −1
3
,− 1

15
, 1

5

4



Table 2: Summary of the Optimism Code

Symbol Dimension Number of unit vectors Cosines

OC 16 256 −1,−1
4
, 0, 1

4

1.1 Two viewpoints which guided our strategy

The first viewpoint is the observation that certain lattices are combinatorially
very rich. One thinks of dense packings, families of equiangular lines asso-
ciated to root lattices, notable rank 3 graphs embedded as sets of minimal
vectors in the Leech lattice, etc.

The set of inner products in BCGM made us think of the ZOPT prop-
erty of Barnes-Wall lattices. The resemblance hinted that some set of mini-
mal vectors of BW24 , suitably modified, could become a spherical code like
BCGM.

The second viewpoint is that group theory could help find the desired
code. One might try to find the right group and the right vector in 14-space
so that the orbit would be a copy of the BCGM spherical code. The right
group would be a group extension, of the form GL(3, 2) extended downwards
by a normal 2-subgroup of order 27. There are many isomorphism types of
such groups, and many low-dimensional representations of them. One needs
more focus before heavy searching.

These two viewpoints strongly suggested a look inside the automorphism
group of BW24 , which is isomorphic to BRW+(24) ∼= 21+8

+ Ω+(8, 2), since this
group contains many downward extensions of GL(3, 2) by 2-subgroups and
the set of minimal vectors in BW24 is well-understood and satisfies the ZOPT
property.

In conducting a search, we must consider aspects of GL(3, 2)-actions on
2-groups. There are two frequently-studied permutation representations of
GL(3, 2), the actions on its vector space F3

2 and on the dual space (these
actions are not equivalent, but are related by an outer automorphism). For
such actions, the orbits have lengths 1 and 7. In addition, we shall need to
consider transitive actions of GL(3, 2) on a set of size 8. (recall that there
is a well-known isomorphism GL(3, 2) ∼= PSL(2, 7), and that the PSL(2, 7)
acts transitively on the 8-point projective line over F7). There is a transitive
degree 8 permutation representation which is closely related to the above
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actions on F3
2 and on the dual space. We consider the transitive action of

the affine general linear group AGL(3, 2) on F3
2. The stabilizer of the origin

is the above GL(3, 2). In a transitive permutation representation of a group,
any two point stabilizers are conjugate. However, there is a subgroup of
AGL(3, 2) which is isomorphic to GL(3, 2) but which does not stabilize a
point. Its action on F3

2 is transitive. Existence of such a subgroup may be
proved with degree 1 group cohomology.

For the goals of this paper, we begin by looking for subgroups ofBRW+(24)
which are downward extensions of GL(3, 2) by 2-groups and which have a
transitive permutation representation of degree 64. A length 64 orbit of such
a subgroup on the minimal vectors of BW24 could be used to define a code
like BCGM. As we consider such subgroups, we find that naive candidates
do not meet our conditions for one reason or another (such as wrong orbit
lengths or orbits having more than three cosines, which can happen if the
extending 2-group is too large). Therefore, we are forced to consider more
exotic subgroups. As in the last paragraph, cohomology is used to guide our
choices, but the work is technically more difficult than with GL(3, 2).

For a discussion of exceptional nonvanishing cohomology in finite simple
group theory, see [12]. We mention that degree 1 and 2 cohomology of
GL(d, 2) on Fd2 is 0 for d ≥ 6, so our procedures for d ≥ 4 can not be
copied for higher dimensional Barnes-Wall lattices.

Acknowledgements. We thank Henry Cohn for describing BCGM and
explaining background. For useful consultations, we thank Eichii Bannai,
Etsuko Bannai and Akihiro Munemasa. This work was begun at the Ober-
wolfach Mathematische Forschungsinstitut at the meeting 21-25 November,
2005, and was supported in part by grants NSA (NSA-H98230-05-1-0024)
and NSF (DMS-0600854).

1.2 List of Notations and Definitions

A.B means an extension of groups (A normal, giving quotient B).
A·B,A:B mean nonsplit, split extensions, respectively.
pm means an elementary abelian p-group of rank m (p prime).
Op(G) means the largest normal p-subgroup of the finite group G (p

prime).
CG(X), NG(X) shall mean the centralizer, normalizer, respectively, in a

group G of a subset X (subscript G may be omitted); this notation extends
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to subsets X of a set on which G has a permutation representation.
P (S) means the power set of the set S, considered as a vector space over

F2, and PE(S) means the subspace of even subsets of the finite set S.
The term weight refers to weight of a binary codeword, i.e., the cardinality

of its support. We generally identify a binary codeword with its support and
vector addition with the symmetric difference of subsets.

Mon(n, {±1}) denotes the group of degree n monomial matrices with
entries 0,±1 only.

Groups actions on sets and modules will be on the right, sometimes with
exponential notation. The conjugate of x by y is xy = y−1xy and the com-
mutator of x and y is [x, y] = x−1y−1xy.

A module is uniserial if it has only one composition series.
A set S of vectors in Rn has the ZOPT property if for any x, y ∈ S,

(x, y) ∈ {0,±2k|k = 0, 1, 2, · · · } (ZOPT stands for: zero or power of 2).

2 Unidefect criterion for a tricosine spherical

code

We give a criterion for constructing tricosine spherical codes in (2.7). The

cosines for a pair of minimal vectors inBW2d form the set {0,±1
2
,±1

4
, · · · ,±2−b

d
2
c}.

The idea is to look for a subgroup of the isometry group of the Barnes-Wall
lattice BW2d and an orbit of it on minimal vectors so that the set of cosines
within the orbit is limited to three values, but the orbit is large enough to
be interesting.

First, we need to sketch notation for the Barnes-Wall lattices, BW2d . This
is taken from our recent article [14]. See also the classic articles [2], [5].

Notation 2.1. We take the rank 2d Barnes-Wall lattice BW2d and the sub-
group G := BRW+(2d) ∼= 21+2d

+ Ω+(2d, 2) of the automorphism group, which
for d 6= 3 is the full automorphism group. As in [14], we set R := O2(G) ∼=
21+2d

+ . Let F be a sultry frame (this is an R-orbit of minimal vectors in
BW2d [14]) and B ⊂ F , an orthogonal basis of V , the ambient real vec-
tor space. We use indices {0, 1, . . . , 2d − 1} to label the orthonormal basis

2−
d
2B = {v0, v1, . . . } and vector space Ω := Fd2 = {ω0, ω1, . . . }. When A

is a subset of Ω, write vA :=
∑

i∈A vi. The group R is generated by two
easily-described sets of involutions. One is the sign changes on F at indices
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corresponding to affine hyperplanes and the second corresponds to transla-
tions of indices by elements of Ω.

For a subset A of Ω, let εA be the orthogonal transformation which takes

each vi to

{
−vi i ∈ A
vi i 6∈ A

. In G, take the associated diagonal subgroup D and

N its normalizer. The group D consists of all εA where A ranges over the
Reed-Muller code RM(2, d). Also we assume that B is chosen so that N is a
semidirect product DP , for a group P ∼= AGL(d, 2) of permutation matrices
with respect to B. We assume that the bijection vi 7→ ωi is an equivariance
respecting the identification P ∼= AGL(d, 2).

Notation 2.2. We identify V with R2d
by use of the orthonormal basis

vi, i ∈ Ω (2.1). We denote by vΩ the all-1 vector (1, 1, 1, . . . , 1, 1). (If d is
even, vΩ is in the standard BW2d . ) Finally, we suppose that Q is a subgroup
of P and J a subgroup of D which is normalized by Q such that −1 6∈ J .

Definition 2.3. A spherical code is a diagonal code if it is an orbit of vΩ by
a subgroup of the diagonal group D in a BRW+(2d)-group.

Definition 2.4. The defect of an involution t ∈ G is the integer k so that
22(d−k) is the order of CR/Z(R)(t). We have 0 ≤ k ≤ d

2
[14, 15]. The defect of a

codeword c ∈ RM(2, d) is the defect of the involution εc ∈ G. (We mention
that the defect of a codeword c has another interpretation, the least number of
codimension 2 affine subspaces needed to sum to an element of c+RM(1, d)).
See [15] for a detailed discussion of defects of both an involution in G and of
a codeword in RM(2, d).)

The main properties we need here are that the weight of a defect k code-
word is one of the values 2d−1 or 2d−1 ± 2d−k−1, and the fact that every
involution of G in a given coset of R has a common defect (this implies that
defect is constant for any coset of RM(1, d) in RM(2, d)). A codeword of
weight 2d−1 ± 2d−k−1 is clean and one of weight 2d−1 is dirty.

Definition 2.5. Call a function f : Q→ J a near-derivation if the associated
function f̄ : Q → J/[J ∩ R] is a derivation, i.e., a 1-cocycle; see (7.1). The
strong unidefect condition on the function f : Q → J is that there exists
a fixed integer k, 1 ≤ k ≤ d

2
so that for all x ∈ Q, f(x) ∈ R or f(x) is a

defect k involution, i.e., has the form εA, where A is a defect k codeword.
An alternate formulation is that there exists a fixed integer k, 1 ≤ k ≤ d

2
so

that every value of f has defect 0 or defect k.
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The unidefect condition on f is that every nonidentity value of f is an
involution of trace 0 or of the form εA, where A is a clean defect k codeword.
This is weaker than the strong unidefect condition because it allows f(x) to
have defect not k as long as f(x) has trace 0.

Remark 2.6. If f : Q → J is a near-derivation as in (2.5), one can define
Ker(f) := {x ∈ Q|f(x) = 0}, but it may not be a subgroup. It is contained
in Ker(f̄), which is a subgroup since f̄ is a derivation.

Proposition 2.7. Let f : Q→ J be a near-derivation (2.5). Assume that f
satisfies the unidefect condition for defect k. Let H := (J ∩R){f(x)x|x ∈ Q}
be the group containing J ∩R which is associated to f ; see (7.3).

Then the orbit vΩH is a set of vectors of common norm 2d for which the
inner product of two distinct members is 0 or ±2d−k. The length of this orbit
is |J ∩R||Q:Ker(f̄)| (see (7.4)).

Proof. Since H consists of isometries, every vector in vΩH has norm 2d.
Every coordinate of a vector in the orbit has value ±1, so an inner product of
two such vectors depends just on the set of coordinates where their coordinate
values differ. Such a set is a codeword of weight 0, 2d−1−2d−k−1, 2d−1+2d−k−1

or 2d. The length of the orbit is the index of the stabilizer of vΩ, which (since
H consists of monomial matrices) is just H∩P , the subgroup of H consisting
of permutation matrices. We take rf(x)x, for r ∈ J ∩R, x ∈ Q and ask when
it is a permutation matrix. The condition is rf(x) = 1, i.e., f(x) = r. Such
a pair r, x exists if and only if x ∈ Ker(f̄). Therefore, Ker(f̄) = H ∩ P is
the stabilizer in H of vΩ. �

Remark 2.8. (i) When f = 0, the code is diagonal (2.3).
(ii) A change in cocycle values may change the cosines.

Definition 2.9. Suppose that S is a set of equal norm nonzero vectors in
V and that W is a subspace of V so that every element of S has the same
projection to W⊥. Then S may be projected to W and rescaled to make
a spherical code in W (excluding the exceptional case S ⊂ W⊥). If S is
n-cosine, then so is the projection. This process is called reduction to W and
the resulting code is called the reduction of S or just the reduced code.

Proposition 2.10. In the situation of (2.7), (2.9), let W be a subspace
spanned by a subset of {vi|i ∈ Ω} which contains all vi moved by H. Then
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W⊥ is spanned by a subset of those vi ∈ Ω which are fixed by H. De-
note ` := dim(W⊥). The reduced spherical code has cosines in the set

{−2d−k−`
2d−` , −`

2d−` ,
2d−k−`

2d−` }.

Proof. The projections of any two vectors x, y ∈ vΩH to W⊥ are the same:
a single vector of norm `. The projections of x and y to W have norm 2d− `
and these projections have inner product (x, y)− `. �

Definition 2.11. A spherical code is called a unidefect code if it is created
from an orbit by projecting and rescaling as in (2.9).

3 Diagonal codes

3.1 DSC2d−`,2d+m, for small `

The technically simplest cases of (2.7) (small Q (2.2) and f = 0 (2.8)) can
be interesting, as the following examples show.

Definition 3.1. Fix an integer k > 0, k ≤ d
2
. A subset Y of D is defect

{0, k}-pure if every involution in it has defect 0 (i.e., is in the lower group R)
or defect k.

It would be useful to find large pure subgroups.

Lemma 3.2. Let 〈g〉 be a cyclic group of prime order p > 2. Define m :=
min{j > 0|2j ≡ 1(mod p)}. The group algebra F2〈g〉 decomposes into a
direct sum of indecomposable ideals I0 ⊕ I1 ⊕ · · · ⊕ Ir, where r = p−1

m
and

I0
∼= F2 and Ik ∼= F2m as rings, for k = 1, · · · , r.

Proof. The group algebra is commutative and, by coprimeness (p, 2) = 1, is
semisimple, so is a direct sum of finite fields. One indecomposable summand
is just the span of

∑p−1
i=0 g

i. Let I be another indecomposable summand.
Then the projection h of g to I is not the identity, so h generates a subgroup
of order p in the group of units I×. Since h generates I as a ring, I ∼= F2m .
A dimension count implies that p = 1 + rm. �

Definition 3.3. A family of diagonal codes associated to Mersenne primes.
Let p = 2m − 1 be a Mersenne prime and suppose that 3 ≤ m ≤ d. Take

g ∈ P of order p and assume that g fixes v0 (see (2.1)). For the action of
Q := 〈g〉 on D, every irreducible constitutent has dimension 1 or m (3.2).
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When m = d, there is a single nontrivial constituent in D ∩ R and d−1
2

of
them in D/D ∩ R (reason: we may interpret the permutation matrix g as a
linear transformation on the vector space Ω, where it fixes only the origin;
the only subsets of Ω fixed by g are ∅, {ω0}, Ω \ {ω0} and Ω, and so ∅ and
Ω are the only members of RM(2, d) fixed by g).

Let J be a 〈g〉-invariant subgroup of D so that J fixes v0, J ∩ R =
CD∩R(v0) and J/J ∩R is a 〈g〉-irreducible module. Then J ∩R has order 2d

and J has order 2m+d. Since 〈g〉 acts transitively on the nontrivial elements
of J/J ∩R, J is {0, k}-pure for some k > 0.

Now take the orbit vΩJ , which is in bijection with J so has 2m+d elements
(note that this orbit equals vΩ〈g〉J since the permutation matrices fix vΩ =
(1, 1, 1, . . . , 1)). The inner product of vΩ with any other member of this
orbit is one of 0,±2d−k. Transitivity implies the analogous property for
every member of the orbit. Rescaling gives unit vectors with inner products
0,±2−k.

In general, for an element r ∈ D of the diagonal group, (vΩ, vΩr) is just
the trace of r. In particular (vΩ, vΩr) = 0 for r ∈ J ∩R, r 6= 1.

Lemma 3.4. Both ±2d−k occur as inner products in the situation of (3.3).

Proof. We use the orthogonality relations for characters of J . Let χ denote
the trace function for linear transformations on V (2.1). As remarked above,
for r ∈ J , the inner product (vΩ, vΩr) is just χ(r).

Define s :=
∑

y∈J χ(y). Then, s
2d+m is the multiplicity of 1 in V |J , which

is at least 1 since J fixes v0 and is at most 1 since V |J∩R affords the regular
representation of J ∩R. So, s

2d+m = 1, whence s = 2d+m.
Let h ∈ J \ R. In (J ∩ R)h, the number of clean elements is 22k [15],

Prop. 3.32. These are the elements of the coset (J∩R)h for which the trace is
nonzero. Suppose that p of these have trace 2d−k and that q have trace −2d−k.
Then, p + q = 22k and 2d+m = s =

∑
y∈J χ(y) = 2d + (p − q)2d−k(2m − 1),

whence 2d(2m − 1) = 2d+m − 2d = (p − q)2d−k(2m − 1). This implies that
(p− q)2−k = 1, or p− q = 2k. Therefore (p, q) = (22k−1 + 2k−1, 22k−1 − 2k−1)
and so both p and q are nonzero. �

Corollary 3.5. The spherical codes of (3.3) have three cosines.

Notation 3.6. The spherical code of (3.3) is denotedDSC2d,2m+d = DSC2d,2m+d;J,g.
The notation DSC2d−`,2m+d = DSC2d−`,2m+d;J,g,W means a spherical code ob-
tained by projecting DSC2d,2m+d;J,g to W , the orthogonal of an `-dimensional
space fixed pointwise by J〈g〉 (for example, span{v0}).
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Example 3.7. Take d = m = 5, p = 31. We get a tricosine spherical code
of 1024 elements in Q32 in which the set of nonzero inner products is either
±1

2
or ±1

4
. One may project to a 31-space for another code with respective

cosine set either {−17
31
,− 1

31
, 15

31
} or {− 9

31
,− 1

31
, 7

31
}.

Remark 3.8. (i) It is not obvious which k in the range 1 ≤ k ≤ bd
2
c may

occur this way.
(ii) The full isometry group of such a code could contain J〈g〉 properly,

e.g. (4.13) occurs here for p = 7,m = d = 3.
(iii) When p = 7, d = 4, there are several (possibly nonisometric) codes,

all with defect 1.

4 Nondiagonal codes

We construct nondiagonal spherical codes in dimension 14 through 16 using
1-cocycle theory for the simple group GL(3, 2) and some of its extensions
acting on various sections of the diagonal group, D. We need more detailed
notation for the index set Ω ∼= F4

2, the Reed-Muller codes and the Barnes-Wall
lattice BW24 . For example, a direct sum decomposition F4

2
∼= F3

2 ⊕ F1
2 will

determine a GL(3, 2)-subgroup of P ∼= AGL(4, 2). We shall use variations of
this idea.

Notation 4.1. We continue to use the notation of (2.1) for d = 4. Let W
be the annihilator of W01 := span{v0, v1}. We take the subgroup E ∼= 23 of
D ∩ R which is trivial on W01. Let P{01} ∼= 2× 23:GL(3, 2) be the subgroup
of P ∼= AGL(4, 2) which stabilizes Ω{01} = {ω0, ω1} and P0,1 the subgroup
which fixes both ω0 and ω1. It has the form P0,1 = UQ, where Q ∼= GL(3, 2)
and U := O2(P0,1) ∼= 23.

We take B0 to be an affine hyperplane of Ω which contains ω0 but not ω1

and let B1 := Ω \ B0, an affine hyperplane of Ω which contains ω1 but not
ω0. We choose Q to stabilize B0 and B1. Let p01 be the involution which
generates Z(P{01}). It corresponds to translation from ω0 to ω1.

We use the Reed-Muller codes RM(r, 4) spanned by affine subspaces of
Ω of codimension r. Let Si be the subspace of P (Ω) which is spanned by all
affine codimension 2 subspaces which are contained in Bi. Then dim(Si) = 4
for i = 0, 1, S0 ∩ S1 = 0, RM(2, 4) ≥ S := S0 + S1 ≥ RM(1, 4) ≥ S01 :=
CS(p01), dim(RM(2, 4)) = 11 and dim(S0 + S1) = 8.
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Define Ti := {A ∈ Si|ωi 6∈ A}, a dimension 3 subspace of Si, for i = 0, 1.
Let Fi := {εA|A ∈ Ti} ∼= 23. Define T01 := CT0+T1(p01) = {x+ xp01|x ∈ T0}.

For {i, j} = {0, 1}, define Di := 〈εA|A ∈ PE(Bi), ωi 6∈ A〉 ∼= 26. The
groups Di are not contained in Aut(BW24) (in fact, Di ∩ Aut(BW24) =
Fi, i = 0, 1) but the diagonal group D01 := CD0×D1(p01) is in Aut(BW24).
The corresponding subspace of PE(B0)⊕ PE(B1) is denoted B[01], so that
D01 = {εA|A ∈ B[01]}. Moreover, J := F0F1D01 = CD({v0, v1}) is an index
4 subgroup of D. Also, E = D01 ∩ J .

The action of Q fixes the Si and Ti and Q normalizes the Fi and D01, so
that J = Fi×D01 as Q-modules, for i = 0, 1. Note that CD(Q) = 〈εB0 , εB1〉 =
〈εB0 ,−1〉 so that, as Q-modules, D = J ×CD(Q) (and the first direct factor
may be decomposed).

Lemma 4.2. dim(H1(Q,Fi)) = 1 for i = 1, 2, dim(H1(Q, J/E)) = 1 and
dim(H1(Q, J)) = 2.

Proof. See (7.6), (7.8). Use the fact that J is the module direct sum of Fi
and D01. �

4.1 F2[GL(3, 2)]-modules

Notation 4.3. Call the irreducible F2[GL(3, 2)]-modules 3, 3′, 1 and 8 (the
number indicates dimension and the prime indicates duality) [19], [3]. We
inflate this notation to F2Q-representations. Let us say that Ω ∼= F4

2 as a
Q-module has composition factors 1, 3.

Lemma 4.4. (i) U ∼= E ∼= 3′.
(ii) T0

∼= T1
∼= 3′.

(iii) F0
∼= F1

∼= 3′.
(iv) D0/F0

∼= D1/F1
∼= J/F0F1

∼= 3.

Proof. (i) If we take ω0 as an origin, U is in F2-duality with the quotient
space Ω/{ω0, ω1}.

(ii) The first isomorphism is realized by the action of p01. For the sec-
ond, note that T1 may be identified with linear functionals on Ω which have
{ω0, ω1} in their kernel.

(iii) Consider the definition of Fi.
(iv) First, note that each Di/Fi is in duality with Ti. Secondly, note that

each Di/Fi covers J/F0F1. �
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4.2 Good subgroups of shape 23.GL(3, 2)

We now study a family subgroups of the form 23.GL(3, 2) and the defects
associated to their involutions. Certain ones will satisfy a unidefect condition.

Notation 4.5. We continue to use the notation of (4.1). We form the semidi-
rect product JQ and consider G := {H|E ≤ H ≤ JQ,H/E ∼= GL(3, 2)}.
This set has cardinality 256 and is a union of four orbits under J or JQ,
by (4.4), (4.2). Each orbit is represented by a 1-cohomology class of Q with
coefficients in J/E. By (2.4), if H ∈ G, the involutions of H \ E have con-
stant defect, 1 or 2. We call this defect the defect of H ∈ G (the involutions
in E have defect 0). If γ is a near-derivation (2.5) associated to H, write
γ = γ0γ1 to indicate the components with respect to the direct sum Fi×D01,
for a fixed i ∈ {0, 1}. Then γ0 is a derivation and γ1 is a near-derivation.
Write γ̄j for values of γj modulo E and γ̄ for values of γ modulo E. Because
of the correspondence of H ∈ G with the class of a near-derivation on Q,
we may say that H has the unidefect property (2.5) if and only if such a
near-derivation does.

Lemma 4.6. Assume the notation as in (4.5). Then H splits over E if and
only if γ̄1 is an inner derivation.

Proof. The “only if” part is trivial. Assume γ̄1 is an inner derivation. Then
H is conjugate by an element of D01 to FiEQ modulo Fi, which is split over
E. �

Remark 4.7. For each H ∈ G, the orbit 1
4
vΩH is a spherical code whose

set of cosines depends on H. We get its cardinality from (2.7) and the
observation that the stabilizer in H of vΩ is just H ∩ P . In the notation of
(4.5), H ∩P = H ∩Q = Ker(γ̄0)∩Ker(γ̄1). The derivation kernels can have
indices 1, 7 or 8 in Q and Ker(γ̄0) ∩Ker(γ̄1) can have indices 1, 7, 8, 42 or
56.

Note that the orbit lengths depend on actual cocycles and not just co-
homology classes. We are looking for a code like BCGM, so the case of
interest is |Q : Ker(γ̄0)∩Ker(γ̄1)| = 8, which means Ker(γ̄0) = Ker(γ̄1) is a
Frobenius group of order 21. Derivations on irreducible 3-dimensional mod-
ules with such kernels are outer and furthermore are associated to nonsplit
extensions (4.6).

Finally, we comment that the orbit corresponding to a split extension
contains groups of defects 0 and 1 only.
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Lemma 4.8. Suppose that γ̄0 and γ̄1 have the same kernel and γ̄ takes a
nontrivial value which has defect k ≥ 1. Then all nontrivial values of γ̄ have
defect k and so Q, γ, J satisfy the unidefect k condition.

Proof. We have K := Ker(γ̄) = Ker(γ̄0) = Ker(γ̄1) is isomorphic to Sym4

or a Frobenius group of order 21. The action of Q on the cosets of K is
doubly transitive. Now use (7.5)(iv). �

Lemma 4.9. Both unidefect 1 and 2 subgroups occur in G. In particular,
the class with both components (4.5) noninner has a unidefect 2 subgroup H∗

which furthermore has orbit length |vΩH
∗| = 64.

Proof. A near-derivation Q → J whose values lie in one of the Fi is a
derivation. If nontrivial, the derivation takes values which are involutions of
defect 1 (because all nonzero codewords of Ti have weight 4). A member of
G with γ̄1 trivial has defect 1 or 0.

Consider the case γ̄1 nontrivial and γ̄0 trivial. Every weight in B[01] is
divisible by 4 and all codewords in B[01]\RM(1, 4) have defect 1. Therefore,
γ has unidefect 1.

Suppose γ̄1 noninner and γ̄0 noninner. Assume further that Ker(γ̄0) =
Ker(γ̄1), whence both are Frobenius groups of order 21 (7.7)(ii). This equal-
ity does occur for some groups in this orbit. We shall demonstrate explicitly
such a γ which takes value in EεY , for a 6-set Y .

Fix an involution t ∈ Q.
Note that on B0 \ {v0}, the action of the involution t ∈ Q has a pair of

length 2 orbits, hence on PE(B0\{v0}) has 2-dimensional commutator space,
M . Let {a, a′} and {b, b′} be the nontrivial orbits of t. Then {a, a′}, {b, b′}
span M and the 1-space M ∩ T0 is the span of {a, a′, b, b′}, an affine 2-space.

There are fixed points d, e of t on B0 \{v0} so that {a, a′, d, e} is an affine
2-space (so is in T0 (4.1)).

Similarly, b, b′ is contained in {b, b′, d, e}, an affine 2-space which is the
sum of the two previous affine 2-spaces.

Let f be the remaining fixed point. The 4-set {a, a′, d, f} is congruent to
{e, f} modulo span({a, a′, d, e}). Both these sets are fixed by t.

Now define u := ep01 , v := fp01 ∈ B1. The 6-set Y := {u, v, a, a′, d, f}
is fixed by t and Y = {u, v, e, f} + {a, a′, d, e} ∈ B[01] + T0 ≤ RM(2, 4).
There exists a near-derivation γ so that γ(t) = εY (see (7.10)(ii), applied to
B[01]/T01 and Ti). Now use (4.8). �
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Corollary 4.10. There are H ∈ G which have unidefect 2. For such H,
let γ be an associated near-derivation. Every element of H has the form
rq, where q is a permutation matrix and r ∈ D effects sign changes at no
coordinates, or at a clean codeword of defect 2 (of weight 6 or 10) or at a
midset (weight 8). The values of γ outside R have defect 2. The extension
1 → E → H → GL(3, 2) → 1 does not split. There exists a particular such
H, called H∗, so that p01 normalizes H∗ and satisfies [H∗, p01] = O2(H∗)

Proof. All is clear except possibly for the nonsplitting. For that point, we
use (4.6), (7.7)(ii) and the fact that Ker(γ̄0) = Ker(γ̄1) is a Frobenius group
of order 21. �

Corollary 4.11. Suppose that S is a subgroup of DQ which is isomorphic
to 23.GL(3, 2). Then S ∈ G.

Proof. Since S covers DQ/D ∼= Q, S ∩ R = E = [D ∩ R,Q]. If we write
D = CD(Q) × J , then DQ = JQ × CD(Q). Since S = [S, S], S ≤ JQ, and
so S ∈ G. �

4.3 Existence of NSC16,64, NSC15,64 and NSC14,64

Notation 4.12. Let H∗ ∈ G be a unidefect 2 group, as in (4.10). Then
vΩH

∗ = vΩ〈p01, H
∗〉 has cardinality 64.

Let π be the orthogonal projection V → W and ρ the orthogonal projec-
tion V → v⊥0 . We define spherical codes NSC16,64, NSC15,64, NSC14,64 as
the vectors of the respective orbits vΩH

∗, (vΩH
∗)ρ and (vΩH)π, scaled to be

unit vectors in 16-, 15- and 14-dimensional space.

Theorem 4.13. (i) The set of cosines for NSC16,64 is {0,±1
4
}.

(ii) The set of cosines for NSC15,64 is {−1
3
,− 1

15
, 1

5
}.

(iii) The set of cosines for NSC14,64 is {−1
7
,−3

7
, 1

7
}.

Proof. (2.10). �

4.4 Existence of NSC16,128 and NSC15,128

We get larger tricosine codes in two of the three previous situations by in-
creasing the groups slightly.

Recall the definitions of B0 and B1 (4.1). Consider, in BW24 , the sign
change isometry εB0 , where ω0 6∈ B0 and ω1 ∈ B0.
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Notation 4.14. We increaseH∗ toH∗∗ := H∗〈εB0〉. Since [H∗, εB0 ] ≤ E, the
dihedral group 〈p01, εB0〉 normalizes H∗ but εB0 does not normalize the group
H∗〈p01〉 of (4.10). Denote by NSC16,128 the spherical code in R16 obtained
by scaling the elements of vΩH

∗∗ to unit length. Denote by NSC15,128 the
reduced spherical code in R15 obtained projecting vΩH

∗∗ to v⊥0 , then rescaling
to unit length.

Theorem 4.15. (i) NSC16,128 has cardinality 128 and cosines {−1
4
, 0, 1

4
};

(ii) NSC15,128 has cardinality 128 and cosines {−1
5
,− 1

15
, 1

3
}.

Proof. As with H∗, use (2.7) and (2.10). Since H∗ satisfies the strict 2-
unidefect condition, so does H∗∗, which is created from H∗ by replacing E
with the slightly larger lower group E〈εB0〉. �

Remark 4.16. (i) The automorphism group of vΩH
∗∗ excludes p01 (or else

−1 = [p01, εB0 ] would be an automorphism, which would enlarge the cosine
set to include −1).

(ii) Projection to the 14-space W does not seem to give a tricosine code.

5 Computations

We outline a straightforward computational method for finding our unidefect
spherical codes (2.7), and possibly new ones, by computer. Such a code is an
orbit for a finite group H (some subgroup of the frame stabilizer N = DP
(4.1)), so is a union of orbits of any subgroup of H. We take the subgroup
H ∩ P , the subgroup of H consisting of permutation matrices. Since there
are no signs in these matrices, orbits of this group could be relatively easy to
compute if we have a convenient set of generators. For these codes, one may
use an additional group E ∼= 2e of sign changes at a space of codewords of
RM(1, d) such that E is normalized by H ∩ P (this group is relatively easy
to work with since these represent sign changes at affine hyperplanes). We
therefore look for a union of orbits of E(H ∩ P ).

We consider the action of E(H ∩ P ) on the set of all 2d-tuples A of the
form (±1,±1, . . . ,±1) with respect to the standard sultry frame. Also we

have an action on A0 := A ∩BW2d , which has cardinality 21+d+(d
2).

Procedure 5.1. Let Oi, i = 1, 2, . . . be the orbits of E(H ∩ P ). An easy
computer program can list these explicitly and compute inner products in-
volving two orbits. If only three different inner products occurs for some
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union Oj ∪ Oj′ ∪ . . . of two (or more!), this union (rescaled to unit length)
gives a tricosine spherical code. Unlike in (2.7), there is generally no reason
to expect a transitive group of isometries.

Remark 5.2. (i) A search for other codes could be done using other sub-
groups of N . Since the BW2d lattices contain vectors of shape (1X0Ω\X), for
codewords X ∈ RM(2, d), variations of A and A0 may be tried.

(ii) One can check whether the codes created this way are association
schemes by straightforward accounting of inner products (5.1).

6 The Optimism Code and a nonlinear (16, 256, 6)

binary code

We shall define the Optimism Code or Opticode, a 4-cosine spherical code in
dimension 16 with 256 unit vectors. A byproduct is that we deduce the exis-
tence of a nonlinear binary code with parameters (16, 256, 6) and determine
its automorphism group. We furthermore deduce existence of a 64-point sub-
code with cosines {0,±1

4
}, which gives another existence proof of NSC16,64.

There is a famous nonlinear binary code with parameters (16, 256, 6),
the Nordstrom-Robinson code. Existence of such a code has been given in
several ways (see [21], [9]). There are references (e.g., in [8, 20]) to a 1973
uniqueness proof by S. L. Snover [24], but the proof seems to be unpublished.
Recently, H. N. Ward announced a new uniqueness proof [25]. Our cocycle-
style existence proof is probably new.

6.1 Near-derivations for AGL(4, 2) on RM(2, 4) and as-
sociated spherical and binary codes

In this subsection, we continue to use the general discussion of BW24 and
subgroups of its standard frame group, starting with (4.1), but do not use
the cohomology studies for GL(3, 2). Instead, we work with a much easier
situation, involving degree 1 cohomology of F2[GL(4, 2)] on its 6-dimensional
module. Applications to a tricosine spherical code and binary code follow
easily.

The relevant modules are easy to describe as part of a general setting.
Let Γ be an n-set with the natural action of Symn and let Y := F2Γ be
the permutation module. Define ε : Y → F2 to be the map which sends a
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linear combination
∑

α∈Γ cαα of Γ to
∑

α∈Γ cα, the sum of its coordinates.
The only F2Symn-submodules of Y are Y0 := Ker(ε) (dimension n− 1) and
Y1, the span of

∑
α∈Γ α (dimension 1). Then Y = Y0 ⊕ Y1 if n is odd and Y

is uniserial with Loewey series Y > Y0 > Y1 > 0 if n is even. The same is
true for Sym′n = Altn if n ≥ 3.

For our purposes, we need only the special result (6.1) (in which the
6-dimensional irreducible module Y0/Y1 for GL(4, 2) ∼= Alt8 ∼= Ω+(6, 2) is
denoted by M).

Notation 6.1. LetM be the 6-dimensional irreducible module for F2[GL(4, 2)]
which occurs in the tensor square of the standard 4-dimensional module.
Then H1(GL(4, 2),M) is 1-dimensional [22]. If X is the 8-dimensional per-
mutation module for GL(4, 2) ∼= Alt8, X is uniserial with Loewey factors
F2,M,F2 and every derivation on M is inherited from a derivation on X.

Notation 6.2. We use the notation of (6.1) and identify D/(D ∩ R) as a
subquotient of X. Let f be the near-derivation P → D whose associated
derivation f̄ to D/(D∩R) is identified with the derivation inherited from X
whose kernel K is an 24:Alt7 subgroup of 24:Alt8 (in more concrete language,
we suppose that the permutation module for Alt8 has basis e1, . . . , e8; then
f̄ is identified with the map which sends permutation g to e1 + e1g modulo
F2(e1+· · ·+e8)). The set of nontrivial cosets of D∩R contained in Im(f)(D∩
R) forms an orbit of length 7 for the action of K = Ker(f̄) (7.5).

We need to check that Im(f)(D∩R) has weights 0, 6, 8, 10, 16 only (i.e.,
4 and 12 do not occur).

Lemma 6.3. For the natural quadratic form on RM(2, 4), the radical is
RM(1, 4). The action of AGL(4, 2) on RM(2, 4)/RM(1, 4) induces the as-
sociated Ω+(6, 2) and has kernel the translation subgroup.

Proof. The first part follows from the well-known annihilation results for
Reed-Muller codes [20]. The rest follows for example from group orders. �

Corollary 6.4. The weights in Im(f)(D ∩R) are just 0, 6, 8, 10 and 16.

Proof. Let K0 be the stabilizer in K of a nontrivial coset of D ∩ R in the
orbit of (6.2). Then K0/O2(K0) ∼= Alt6. Such a coset in D/(D ∩R) may be
interpreted as a nonsingular vector in the sense of the natural nondegenerate
quadratic form on D/(D ∩ R) (this is clear since the stabilizer of a singular
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vector in the associated orthogonal group, which is isomorphic to Ω+(6, 2),
has shape 24.32.22 and so is solvable, whereas K0 induces on D/(D ∩ R)
a nonsolvable group of transformations, isomorphic to Alt6). The natural
quadratic form on Y0 (see beginning of this subsection) takes y ∈ Y0 to half
its weight modulo 2. Therefore, the weights in such a coset of D ∩ R in the
orbit of (6.2) are 2(mod 4). A weight in RM(2, 4) is either 0, 8 or a number
of the form 2d−1 ± 2d−k−1 for d = 4 and k ≤ d

2
= 4, so we must have k = 2

and 2d−1 ± 2d−k−1 is 6 or 10.
The defects on involutions in a coset of D∩R in D are constant. Besides

the cosets from the above orbit, the only other coset in Im(f)(D ∩ R) is
D ∩R, in which weights 0, 8, 16 are represented. �

Notation 6.5. We now let OG be the subgroup between D∩R and N = DP
(4.1) which corresponds to the near-derivation f as in (6.2). Then OG has
shape 21+8

+ GL(4, 2). Define OC := 1
4
vΩOG. The stabilizer of vΩ in OG is just

OG ∩P ∼= 24:Alt7. This code clearly has cardinality 256 and the minus signs
occur with multiplicities equal to the weights of (6.4).

The binary code BC16,256,6 is defined to be the set of 256 binary vectors
corresponding to the elements of OC as follows: if a = (ai) ∈ F16

2 corre-
sponds to y = (yi) ∈ OC, then ai = 0, 1 according to whether yi = 1

4
,−1

4
,

respectively.

Definition 6.6. We call OG the Optimism Group and OC the Optimism
Code. For short, we say Optigroup and Opticode.

As in (2.1), for a subset A of Ω, vA =
∑

i∈A vi (so that vΩ = vΩ).

Lemma 6.7. (i) For any B ⊆ Ω, (vΩ, vΩ − 2vB) = 16− 2|B|.
(ii) Let X be an orbit for D ∩R on OC. Then (X,X) = {0,±1}.
(iii) If X, Y are different orbits for D ∩R on OC, then (X, Y ) = {±1

4
}.

Proof. (i) We compute that (vΩ, vB) = |B| and so (vΩ, vΩ−2vB) = 16−2|B|.
(ii) This is clear since vΩ − 2vB is in the orbit of vΩ if and only if B is a

hyperplane or 0 or Ω, i.e., B ∈ RM(1, 4).
(iii) Let x ∈ X, y ∈ Y . We may assume by transitivity of OG that

x = 1
4
vΩ. Then y = 1

4
vΩ− 1

2
vS, where S has defect 2, whence S has weight 6

or 10 (weight 8 is impossible here since the number of clean elements in the
coset S+RM(1, 4) is 22k+1 = 25, by [15], Prop. 3.32). Therefore, (x, y) = ±1

4
.

Since X = −X, the result follows. �
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Definition 6.8. Let F be a sultry frame in BW2d and let UF := {x ∈
BW2d |x ∈

∑
f∈F 2−b

d
2
c+1}. This is a sublattice of index 2 in BW2d ([5, 2, 14]),

called the even sublattice of BW2d with respect to the sultry frame F .

Lemma 6.9. Let d ≥ 4 and F a sultry frame in BW2d. Then Aut(UF ) is

the stabilizer of F in Aut(BW2d), a group of the form 2d+(d
2):AGL(d, 2).

Proof. This follows since the set of minimal vectors v of UF which satisfy
(v, UF ) ≤ 2Z is just F [5, 2, 14]. �

Corollary 6.10. (i) The Z-span of 2OC + 2OC is the even sublattice of the
Barnes-Wall lattice BW24 (2.1) with respect to F , the standard sultry frame
of all (015,±21).

(ii) The Z-span of 2OC is BW24.
(iii) Aut(OC) is contained in StabAut(BW24 )(F ), where F is a frame as in

(i). The shape of StabAut(BW24 )(F ) is 211:AGL(4, 2).

Proof. First, note that 2OC is contained in our standard BW24 , as a set of
minimal vectors. Denote by M the sublattice of BW24 spanned by 2OC and
let M0 the sublattice of BW24 spanned by 2OC+2OC. Since every element of
2OC has inner product ±1 with members of F , |M : M0| = 2. Therefore, (i)
implies (ii). A consequence of (ii) is that Aut(OC) is contained in Aut(BW24)
and, by (i), is in the subgroup of it stabilizing the frame. So, both (ii) and
(iii) follow from (i), which we now prove.

We let U0 be the Z-span of the standard sultry frame of all (015,±21) and
let U be the associated even sublattice of BW24 (6.8).

We shall prove that M contains
(1.a) all vB, for B an affine hyperplane;
(1.b) all 2vB for all dimension 2 affine subspaces B;
(1.c) all 2vB for all even sets B;
(1.d) some 2vB, for |B| odd;
(1.e) all 2vi, i ∈ Ω.

We shall use the following equation several times:

(∗) vS1 + vS2 = vS1+S2 + 2vS1∩S2 , forS1, S2 ⊆ Ω.

Let X := 1
4
vΩ(D ∩ R), the orbit containing the all-1

4
vector 1

4
vΩ and the

vectors obtained from it by changing signs at an index set in RM(1, 4). Then
{1

2
vΩ + 2x′|x′ ∈ X}, consists of all vA, for A ∈ RM(1, 4). This implies (1.a).

Use (*) to get (1.b).
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If Y is an orbit different from X, it follows that 1
2
vΩ + 2y, y ∈ Y , consists

of vS, where S has weight 6 or 10. Let S be such a 6-set and let H be
any affine hyperplane. Then S ∩ H is even and S + H ∈ RM(2, 4) has
defect 2, whence only weights 6, 10 are possible for S + H. Therefore the
unordered pair {|S + H|, |S + H + Ω|} is {6, 10} and the unordered pair
{|S ∩ H|, |S ∩ (H + Ω|)} is {2, 4}. If S,H are as above and |S ∩ H| = 2,
then (*) implies that 2vS∩H ∈M . Since the group (D ∩R)K ∼= 24:Alt7 acts
doubly transitively on coordinates and preserves M , (1.c) follows. (One may
avoid using group action here with a counting argument.)

Let U1 be the sublattice of U spanned by the vectors 2vi and vA, A ∈
RM(1, 4). Then U1/U0

∼= RM(2, 4). Note that if Z is an orbit of D ∩ R on
OC, then all elements of 2Z are congruent modulo U1. The quadratic space
RM(2, 4) has radical RM(1, 4). In the 6-dimensional nonsingular quadratic
space U/U1

∼= RM(2, 4)/RM(1, 4), the 7 vectors 2Y +2X+U1, for Y ranging
over all D ∩ R-orbits different from X, give mod 2 Gram matrix (1 + δij);
see (6.7). This matrix has rank 6 (because the all-1 matrix is idempotent of
rank 1). Therefore, these 7 vectors span U/U1 and so

(**) M1 + U1 = U where M1 is generated by the set of vA such that A a
6-set and vA ∈M .

Therefore, given a 6-set S as above, there exists a 6-set T ∈ RM(2, 4) so
that 1

2
vΩεT is in 2OC and |S ∩ T | is odd. Then (1.d) follows. At once, (1.c)

and (1.d) imply (1.e). Since (1.a) and (1.e) imply that U1 ≤ M , (i) follows
from (**). �

Corollary 6.11. Let X := 1
4
vΩ(D∩R). Then StabAut(OC)(X) = (D∩R)K =

RK = RK0 ≤ Aut(BW24).

Proof. From (6.10)(iii), StabAut(OC)(X) embeds as a subgroup of StabAut(BW24 )(F )
which contains (D∩R)K. Since Aut(OC) acts transitively on the set of D∩R-
orbits inOC, StabAut(OC)(X)D/D is isomorphic toAlt7. Since StabAut(OC)(X)
contains (D∩R)K, the Dedekind law implies that (D∩R)K ≤ StabAut(OC)(X) =
(D ∩ StabAut(OC)(X))K. Since StabD(vΩ) = 1, D ∩ StabAut(OC)(X) = D ∩ R
and the result follows. �

Theorem 6.12. The isometry group of the optimism code is just the opti-
mism group OG, of shape 21+8

+ GL(4, 2).

Proof. Use (6.11) and the fact that OG is a subgroup of BRW+(24) and is
transitive on the orbits of (D ∩R). �
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Proposition 6.13. The isometry group of BC16,256 is isomorphic to 24:Alt7.

Proof. The isometry group of this binary code embeds by coordinatewise
action on V in OG as the subgroup OG ∩P . This is just the subgroup of the
monomial group OG stabilizing vΩ. �

Remark 6.14. For earlier determinations of the automorphism group of the
Nordstrom-Robinson code, see [4], [9], [24].

6.2 NSC16,64 as subcode of the Optimism Code

We continue to use the notation of the previous subsection.

Notation 6.15. For distinct indices i, j . . . , let OGij... be the pointwise sta-
bilizer in OG of each of the 1-spaces Qvi, Qvj, . . . and let OG[ij... ] be the
global stabilizer in OG of each of the 1-spaces Qvi, Qvj, . . . . Thus, the quo-
tient group OG [ij... ]/OGij... induces a group of sign changes at each of the
subspaces Qvi, Qvj, . . . . Note that OG[i] has shape 25.GL(4, 2) and OG[ij]

has shape 25.23.GL(3, 2).
We are interested in H := OG0,1, which has shape 23.23.GL(3, 2). Note

that H ∩R = E, the same group E used in Section 4 (4.1). Also, p01 fixes vΩ

and normalizes H; in fact, [H, p01] = E. Finally, H ∩K ≤ P0,1
∼= 23:GL(3, 2)

and so (7.12) implies that H ∩K is a subgroup of K isomorphic to GL(3, 2)
and acting indecomposably on Ω ∼= F4

2, fixing the 1-space {ω0, ω1}.

Lemma 6.16. The group H of (6.15) has shape 43:GL(3, 2).

Proof. The action of an element of order 7 in H on O2(H) forces O2(H) to
be abelian by a standard Lie ring argument [10], since the two composition
factors therein are isomorphic 3-dimensional modules (by commutation with
p01, for example).

We assume that O2(H) is elementary abelian, then derive a contradiction.
Then O2(H) is completely reducible as a module for H/O2(H) ∼= GL(3, 2)
(it is easy to prove with a minimal resolution [3] that Ext1(Y, Y ) = 0 for a 3-
dimensional irreducible Y ). We therefore may choose a subgroup T ≤ O2(H)
so that T ∼= 23, T ∩ E = 1 and T is normal in H.

Then H splits over H ∩ R = E since T (H ∩ K) is a complementing
subgroup (see (6.15)). By Gaschütz’s theorem [18], OG0, which has shape
24.GL(4, 2), splits over O2(OG0), whence OG0

∼= AGL(4, 2).
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On the other hand, consider a subgroup H1 of H such that H1 ≥ E =
H ∩ R and H1/E ∼= GL(3, 2) acts decomposably on Ω. Then H1 ∈ G (4.11)
and because H1 is not contained in K, the kernel of the derivation f , H1

has positive defect. Since f has defect 2, H1 is isomorphic to the nonsplit
extension 23·GL(3, 2) (4.10). This gives a contradiction since the nonsplit
extension 23·GL(3, 2) does not embed in AGL(4, 2) (7.13).

We conclude that O2(H) ∼= 43. Existence of the subgroup H ∩ K ∼=
GL(3, 2), explained above, implies the claimed factorization. �

Definition 6.17. We define the spherical code S := 1
4
vΩH, where H is as in

(6.15). The cosines are just {0,±1
4
}. Its cardinality is |H : H ∩ P | = 64. In

fact, O2(H) acts regularly on S.

Remark 6.18. (i) We may view H as the subgroup between E and NX(E)
which corresponds to the near-derivation f restricted to the subgroup of
P0 (see (6.15)) which stabilizes the points ω0 and ω1, equivalently, which
normalizes E. Therefore, S is identified with some NSC16,64, which was
defined as 1

4
vΩH

∗, where H∗ is a subgroup in (4.12) (reason: the cocycle f
we used in (6.2) could have been used to define a suitable group H∗ as in
(4.12) since its values have the right weights).

(ii) This new realization of NSC16,64 has the advantage of exhibiting
H〈p01〉, a larger group of isometries than H∗〈p01〉. Upon projection to 14-
space W , we get a code like BCGM.

(iii) Some of the group extensions occuring in this article appear in the
context of [11].

6.3 Concluding Remarks

Remark 6.19. Alternate constructions of the Optimism Code and a (16, 256, 6)
nonlinear binary code. We take our spherical code NSC16,64 and the group
D∩R ∼= 25. The new spherical code NSC16,64(D∩R) has 256 vectors and co-
sine set {0,±1

4
,−1}. The binary code BC16,256,6 is a set of 256 binary vectors

corresponding to the elements of NSC16,256 as follows: a = (ai) ∈ F16
2 corre-

sponds to y = (yi) ∈ NSC16,256 by the rule ai = 0, 1 according to whether
yi = 1

4
,−1

4
, respectively. Finally, one may start with a Nordstrom-Robinson

type binary code and reverse the previous procedure to define a spherical
code.
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Remark 6.20. Spherical codes and energy. It is clear that one can make
many spherical codes in Rn by taking orbits of the all-1 vector by subgroups
of the degree n monomial group Mon(n, {±1}). One can get larger spherical
codes as orbits by overgroups of such monomial groups, e.g. the optimism
group is contained in a natural 21+8.Alt9 subgroup of BRW+(24). There are
many candidates to try. It is not clear which are likely to be associated to
universally optimal situations. Known examples involve exceptional objects
as well as series (see the table on page 2 of [7]).

7 Appendix: Background on 1-cocycles and

derivations

Definition 7.1. A right 1-cocycle or right derivation from the group X to
the additive right X-module A is a function f : X → A so that f(xy) =
f(x) + f(y)x

−1
for all x, y ∈ X. A 1-coboundary or inner derivation is such a

function of the form f(x) = a−ax−1
, for a fixed a ∈ A. A noninner derivation

is sometimes called an outer derivation.
In case A is a multiplicative group, the derivation condition reads f(xy) =

f(x)f(y)x
−1

and the inner derivation condition reads f(x) = aa−x
−1

.

Remark 7.2. Assume that A is a module for a commutative ring, R. We
observe that the set of 1-cocycles has a natural structure as an R-module.
The set of 1-coboundaries is a submodule and the 1-cohomology group (the
quotient of 1-cocycles by 1-coboundaries) has R-module structure. In this
article, these objects are typically vector spaces over R = F2, so we may
speak about their dimensions.

Proposition 7.3. Let the group H be a semidirect product of normal abelian
subgroup A by a complement X. The complements to A in H correspond to
the 1-cocycles from X to A: if f is a 1-cocycle, the complement associated to
it is {f(x)x|x ∈ H}. Two complements are conjugate by H (equivalently, by
A) if and only if their corresponding 1-cocycles are cohomologous (i.e., their
difference is a 1-coboundary).

Proof. Classic. See for example [16], [18]. �

Definition 7.4. The kernel of a derivation as in (7.1) is Ker(f) := {g ∈
X|f(g) = 0} (in the additive case) and Ker(f) := {g ∈ X|f(g) = 1} (in the
multiplicative case). It is a subgroup, though typically not normal.
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Lemma 7.5. Let f : X → A be as in (7.1). Let K be the kernel of the
derivation f . Then

(i) if x, y ∈ X, then f(x) = f(y) if and only if xK = yK (so, the left
cosets of K are the level sets of the function f);

(ii) If x ∈ K, f(xy) = f(y)x
−1

; consequently, the values of f on the right
coset Ky of K in X form a K-orbit in A.

(iii) The values of f on the double coset KxK, for x ∈ X, form a K-orbit
on A, the orbit containing f(x).

(iv) Suppose X acts doubly transitively on the cosets of K. Then the set
of values of f is the disjoint union of 0 ∈ A with the K-orbit of values taken
by f on the nontrivial double coset of K in X.

Proof. Easy work with the definition of derivation. For (i), set a = xy, b = x.
Then f(a) = f(b)f(b−1a)b

−1
. Consider the condition aK = bK. �

Proposition 7.6. (i) dim(H1(GL(n, 2),Fn2 )) = 0 if n 6= 3;
(ii) dim(H1(GL(3, 2),F3

2)) = 1.

Proof. (i) and (ii) may be found in [17].
The result (ii) is well-known and follows trivially from modular represen-

tation theory, specifically the structure of projective indecomposable modules
for F2[GL(3, 2)]. For a proof with resolutions, see [3]. For an elementary proof
using the interpretation of complements modulo conjugacy, see [18] [13]. For
another, see the proof of (7.8). �

Lemma 7.7. Let G ∼= GL(3, 2) and M a 3-dimensional irreducible F2G-
module.

(i) If f is a nonzero inner derivation from G to M , then Im(f) is a 7-
subset of M containing 0. If a ∈ M \ Im(f), then f is the inner derivation
x 7→ a(1− x−1).

(ii) If f is a noninner derivation, Im(f) = M . Also, Ker(f) ∼= 7:3, the
Frobenius group of order 21.

Proof. (i) Since f is inner, there is a ∈ M so that f(x) = a(1− x−1). The
kernel of f is the index 7 stabilizer of a (a 6= 0 since f 6= 0). Obviously there
is no solution to f(x) = a. Now use (7.5)(i).

(ii) In this paragraph, we use the standard interpretation of H1(G,F2) ∼=
Ext1F2G

(F2,M) by short exact sequences up to equivalence [16]. There is an
indecomposable module, L, so that M ≤ L and L/M ∼= F2. There is a ∈ L
so that f(x) = a(1− x−1) for all x ∈ G. Since f is noninner as a derivation

26



to M , a ∈ L \M . The stabilizer K of a in G (equivalently, the kernel of the
derivation f) must have even index, or by Maschke’s theorem, L would be
decomposable.

The kernel of f is a proper subgroup with index at most |M | = 8. The
index is therefore 7 or 8. The last paragraph proves the index is not 7, and
so we are done by (7.5)(i). �

Proposition 7.8. Let G ∼= GL(3, 2) and let M be a 6-dimensional indecom-
posable module for F2G with two composition factors of dimension 3 which
are duals of each other. Let S be the socle of M . Write 0 → S → M →
M/S → 0.

Then
(i) H1(G,M) has dimension 1 and is the image of H1(G,S) under the

map which comes from the inclusion S →M ;
(ii) Let f : G→M be a 1-cocycle. Either (a) the values of f are contained

in S; or (b), the values of f are not contained in S and the kernel of f is
contained in the index 7 subgroup of G which stabilizes a nonzero vector of
M/S.

Proof. (i) Let H be a subgroup of index 7 in G. We point out that there
are two conjugacy classes of such H. The shortest proof is to quote the
classification of parabolic subgroups of the group GL(3, 2) of Lie type [6].
One can see representatives of these two conjugacy classes as the matrix

subgroups

∗ ∗ ∗0 ∗ ∗
0 ∗ ∗

 and

∗ 0 0
∗ ∗ ∗
∗ ∗ ∗

 of GL(3, 2). (One can also prove this

with techniques from pure group theory. These groups are the normalizers of
the two G-conjugacy classes of Klein four-groups in G [10]. The local fusion
theory of Alperin settles conjugacy.)

One conjugacy class of four-groups is the set of pointwise stabilizers of
hyperplanes in the natural module F3

2 for GL(3, 2) and the other conjugacy
class is the set of pointwise stabilizers of hyperplanes in the dual of the natural
module. Note that these conjugacy classes are fused under the action of an
outer automorphism of GL(3, 2) (say, by the inverse-transpose).

We consider the F2-permutation module P on the cosets of such a sub-
group H. Then P is isomorphic to the direct sum of a module, N , and
the trivial module. The composition factors of N are 3, 3′ (for example, by
consideration of the Brauer characters). The module N is uniserial since H
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fixes a nonzero vector in one of 3, 3′ but not the other. Thus, N represents
a nonzero element of Ext1.

Since dim(Ext1(3, 3′)) = dim(Ext1(3′, 3)) = 1, the module M of the
hypothesis is isomorphic to N or its dual N∗, which is obtained as a sum-
mand of the permutation module on the cosets of the other class of index 7
subgroups. So, it suffices to assume M = N .

We have H1(G,P ) ∼= H1(H,F2) by the Eckmann-Shapiro lemma [16].
The right object has dimension 1 sinceH ∼= Sym4 andH1(H,F2) ∼= Hom(H,F2).
By additivity of the cohomology functor, H1(G,P ) ∼= H1(G,N)⊕H1(G,F2)
and the last summand is zero since it is isomorphic to Hom(G,F2). This
proves that H1(G,N) has dimension 1.

From the long exact sequence, we get 0 → H1(G,S) → H1(G,N) →
H1(G,N/S) → . . . . By dimensions, using the preceding paragraph and
(7.6)(ii), we get the final statement.

Actually, we can prove (7.6)(ii) directly. Since S and N/S are related by
an outer automorphism of G (see an earlier paragraph), these cohomology
groups are isomorphic. Since the long exact sequence then proves that one
has dimension 1, both have dimension 1.

(ii) We may assume that the values of f do not lie in S. By (i), the
composition of f with the quotient modulo S is cohomologous to 0, i.e.,
there is a ∈ M so that f(x) − (a − ax−1) ∈ S for all x ∈ G. Such an a is
not in S. The kernel of f is therefore contained in the stabilizer in G of the
nontrivial vector a+ S ∈M/S. �

Lemma 7.9. Suppose that 1 → A → E → G → 1 is an extension of
G ∼= GL(3, 2) by its standard module A ∼= F3

2. Let A1 be a maximal subgroup
of A and let C1 := CE(A). Then C1 has order 25. If E does not split over A,
then there is B1 ≤ C1, B1

∼= 42 and the elements of C1 \ B1 invert B1 under
conjugation.

Proof. Such a nonsplit extension is unique and its structure is discussed in
several places, e.g. [12]. We shall give a direct treatment here.

Let N1 := NE(A1). Then N1/C1
∼= GL(2, 2) ∼= Sym3. Let h ∈ N1

have order 3. Then CA(h) has order 2 and h acts fixed point freely on the
four-group C1/A. It follows that C1/A1 is isomorphic to either Quat8 or an
elementary abelian group of order 8.

We claim that the case Quat8 does not occur. Assume that it does. Then
A = [C1, C1], [A,C] = A1 and C1/A1

∼= Quat8, which means that the Schur
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multiplier of Quat8 has order divisible by 4. It is well-known that Quat8 has
trivial Schur multiplier [18], a contradiction.

The claim implies that C1/A1 is isomorphic to an elementary abelian
group of order 8 and that C ′1 = A1. The group B1 := [C1, N1] therefore has
index 2 in C1. So B1 has order 16 and admits a fixed point free action by
〈h〉. Such a group must be abelian. The possibilities are that either B1 is
elementary abelian or B1

∼= 42. Notice that 〈h〉 × CA(h) acts faithfully on
B1. In case B1

∼= 42, the elements of C1 \B1 invert B1 under conjugation. In
either case, C1 \ A contains involutions. Since G has one conjugacy class of
involutions, every coset of A which has order 2 in E/A contains involutions.

Suppose that B1 is elementary abelian. Let t be an involution in NE(B1)\
O2(NE(B1)) (note that this set is a union of cosets of A, so that the last
paragraph applies). Then t inverts h, an element of order 3 in NE(B1), by
the Baer-Suzuki theorem [10, 18]. The 2-dimensional irreducible module for
F2[Sym3] is projective and injective, so B1 has a splitting A1×A2 as modules
for 〈t, h〉. Then A2〈t〉 ∼= Dih8 meets A trivially. By Gaschütz’s theorem [18],
E splits over A.

If B1 is not elementary abelian, B1
∼= 42 and the second alternative holds.

�

Lemma 7.10. Let M be an irreducible 3-dimensional module for F2G, where
G ∼= GL(3, 2) and let H be an extension, so that M is normal in H and
H/M ∼= G.

Then
(i) Aut(H) is an extension of Inn(H) by 〈u〉, where the involution u

acts trivially on M and on H/M , so by commutation induces a noninner
derivation from H/M to M ;

(ii) O2(Aut(H)) acts transitively on the two H-classes of involutions in
H \M ; moreover, if t1 and t2 are involutions so that Mt1 = Mt2, there exists
g ∈ O2(Aut(H)) so that g takes t1 to t2 (more precisely, if t ∈ G is in Mt1,
there exists a derivation f : G→M so that f(t) = t1t2).

(iii) If H is a split extension and t ∈ H \M is an involution, there exists
a complement to M in H which contains t.

Proof. (i) Since Aut(G) acts transitively on the two isomorphism types
of irreducible 3-dimensional G-modules, Aut(H) induces only Inn(G) on
G ∼= H/M . Let R be CAut(H)(H/M). Then R acts trivially on M , by absolute
irreducibility of M . Then R is identified with the 1-cocycles from G to M ,
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which forms a 4-dimensional space, by (7.6) (the space of 1-coboundaries is 3-
dimensional and so dim(H1(G,M)) = 1 implies that the space of 1-cocycles
is 4-dimensional). The subgroup O2(Aut(H)) ∩ Inn(H) of R is isomorphic
to M . We take an complement 〈u〉 in R to O2(Aut(H)) ∩ Inn(H).

(ii) If H is a split extension, H \ M contains involutions, and if it is
nonsplit, the same is true, by [12], or (7.9).

By looking at Jordan canonical forms, one sees that H \M has two con-
jugacy classes of involutions. The kernel of an outer derivation is a Frobenius
group of order 21. Therefore, an involution in H \M has, in its action on
O2(Aut(H)), all of its fixed points contained in O2(Aut(H)) ∩ Inn(H), the
subgroup of inner automorphisms coming from elements of M . It follows
that the action of Aut(H) on the conjugacy classes of H fuses the two classes
of involutions in H \M . In particular, any noninner automorphism fuses this
pair of classes. Such an automorphism which is in O2(Aut(H)) has the form
x 7→ xg(x), for x ∈ H, where g : H →M is a derivation. Since g is constant
on cosets of M , we may interpret g as a derivation on H/M ∼= G. If we take
such an automorphism which moves t1 to t2, then g(t1) = t1t2.

(iii) This follows from (ii). �

Lemma 7.11. 3⊗ 3 is uniserial and has composition factors 3′, 3, 3′; 3′⊗ 3′

is uniserial and has composition factors 3, 3′, 3; also, 3⊗ 3′ ∼= 1⊕ 8.

Proof. Well known. We give a sketch here.
Since the group G ∼= GL(3, 2) is small, its Brauer characters may be de-

termined from elementary arguments about modular representation theory;
or see [19], [3].

Now, 3 ⊗ 3′ and 1 ⊕ 8 have the same Brauer character, and since 8 is a
projective and injective module, 3⊗3′ ∼= 1⊕8. A second proof is to note that
3⊗ 3′ ∼= End(3′), so that the action of G may be interpreted as conjugation
on the space of 3× 3 matrices, and that the scalar matrices and the trace 0
matrices are left invariant.

For 3′ ⊗ 3′, the Brauer characters indicate that the composition factors
are isomorphic to 3, 3′, 3. It suffices to prove uniseriality. This tensor product
T := 3′⊗3′ clearly has an action of an involution t which switches the tensor
factors and commutes with the action of G. Therefore, T has G-submodules
Ker(t−1), of dimension 6, and Im(t−1) (contained in Ker(t−1)), dimension
3. Furthermore, T/Ker(t − 1) ∼= Im(t − 1) as G-modules. Since we are in
characteristic 2, Im(t − 1) ∼= 3′ (i.e., x 7→ x ⊗ x is linear). It follows that
T > Ker(t− 1) > Im(t− 1) > 0 is a composition series, with factors 3′, 3, 3′.
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We claim that T is a cyclic module for G. Let a1, a2, a3 be a basis for
A := 3′. Define a4 := a1 + a2 + a3. Then any ordered 3-subset of a1, a2, a3, a4

is a basis of A and any permutation of a1, a2, a3, a4 extends to an invertible
linear transformation on A. Set c := a1 ⊗ a2. The G-submodule B of T
which contains c contains ai ⊗ aj for all i 6= j. Furthermore, by acting with
g ∈ G which fixes a1 and sends a2 to a2 + a1, we see that the image of g − 1
contains a1 ⊗ a1 and so B contains all ai ⊗ ai. The claim follows.

Now, let T > U > V > 0 be any composition series for G. We now
show that the terms are t-invariant. If U were not t-invariant, Ut 6= U is a
submodule and T/(U ∩ Ut) is isomorphic to the direct sum of two copies of
the irreducible T/U . Such a module is not cyclic, a contradiction to the last
paragraph. Therefore, U = Ut. If V were not t-invariant, V t 6= V are two
submodules isomorphic to V , and so, by consideration of the composition
factors, both are isomorphic to 3′. Therefore, T/(V + V t) ∼= 3. This is a
contradiction since T has a unique irreducible quotient and that quotient is
isomorphic to 3′.

This completes the proof of uniseriality for 3′. A proof of uniseriality for
3 is similar to this one. �

Lemma 7.12. Let G ∼= Alt7 act faithfully on V := F4
2.

(i) An involution in G has Jordan canonical form a sum of two indecom-
posable degree 2 blocks.

(ii) Let H be the stabilizer in G of a nonzero vector. Then H ∼= GL(3, 2)
and H acts indecomposably on V with composition factors of dimensions 1,3.

(iii) Let H be the stabilizer in G of a codimension 1 subspace. Then
H ∼= GL(3, 2) and H acts indecomposably on V with composition factors of
dimensions 1,3.

(iv) G contains just two conjugacy classes of subgroups isomorphic to
GL(3, 2).

Proof. (i) If the conclusion is false, such an involution is a transvection
(i.e., the identity plus a rank 1 nilpotent transformation). In GL(4, 2), the
product of two transvections has order at most 4. In G, the involution
(1,5)(2,4) inverts the 5-cycle (1,2,3,4,5) under conjugation, so the product of
two involutions in G can have order 5. So, (i) holds.

(ii): First observe that G acts transitively on V \ {0} since a 5-cycle has
no fixed points (hence 3 orbits of length 5 on V \ {0} and a 7-cycle has at
least one orbit of length 7 (actually, it has two).
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Second, H has index 15, hence order 168, and embeds in Hv, the point
stabilizer inGL(V ) of a nonzero vector, say v. The shape ofHv is 23:GL(3, 2).
We claim that H ∩ O2(Hv) = 1. If false, H contains a nonidentity element
of O2(Hv) which is a transvection, contradicting (i). It follows that the
restriction of the quotient map Hv → Hv/O2(Hv) ∼= GL(3, 2) to H is an
isomorphism onto.

Thirdly, it is clear that V has an invariant 1-space under H and the quo-
tient is a faithful irreducible 3-dimensional module. If V were decomposable
as a direct sum of modules, the involutions of H would act as transvections
on V since they act as transvections on V/F2v. This contradicts (i) and
completes the proof of (ii).

(iii): This follows from consideration of the dual module V ∗ for G.
(iv): Such a subgroup has irreducibles of dimensions 1,3 and 8 only, so

on V , fixes a 1-space or a codimension 1 space. �

Lemma 7.13. The nonsplit extension 23·GL(3, 2) does not embed in AGL(4, 2).

Proof. Let J ∼= 23·GL(3, 2) and suppose that J ≤ K ∼= AGL(4, 2). Let
T := O2(K) and L ∼= GL(4, 2) a complement to T on K. Since J does not
embed in GL(4, 2), by the classification of parabolic subgroups of GL(4, 2)
[6], J ∩ T = O2(J). Thus, JT/T is a subgroup of K/T which has a faithful
module V := F4

2
∼= T . This action of J stabilizes a codimension 1 subspace

corresponding to O2(J) ≤ T .
By the Dedekind law, JT = T (J ∩ L), which contains the subgroup

J ∩ L ∼= GL(3, 2). The action of J on T by conjugation has a 3-dimensional
submodule, J ∩T . Existence of the subgroup J ∩L implies that JT/J ∩T ∼=
2×GL(3, 2). Therefore, J = [J, J ] ≤ [JT, JT ], which has index 2 in JT and
so J = [JT, JT ] = (J ∩ T )(J ∩ L) is a split extension, contradiction. �
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