1. Define
\[f(x) = \begin{cases}
 x & \text{if } x \leq 0 \\
 x+1 & \text{if } x > 0.
\end{cases} \]
Determine its inverse function \(f^{-1} \) and prove that \(f^{-1} \) is continuous at 0.

2. Let \(D = [0,1] \cup (2,3] \) and define \(f \) by
\[f(x) = \begin{cases}
 x & \text{if } 0 \leq x \leq 1 \\
 x-1 & \text{if } 2 < x \leq 3.
\end{cases} \]
Prove that \(f \) is continuous on \(D \). Determine \(f^{-1} \) and prove that \(f^{-1} \) is not continuous on \(f(D) := \{ f(x) \mid x \in D \} \). Does this contradict Theorem 18.4?

3. Let the function \(f \) be a real valued bounded continuous function on \(\mathbb{R} \). Prove that there is a solution of the equation
\[(0.1) \quad f(x) = x, \quad x \in \mathbb{R}. \]
Now choose a number \(a \) with \(f(a) > a \) and define the sequence \((a_n) \) recursively by defining \(a_1 = a \) and \(a_{n+1} = f(a_n) \), where \(n \in \mathbb{N} \). If \(f \) is strictly increasing on \(\mathbb{R} \), show that \((a_n) \) converges to a solution of the equation (0.1). This method for approximating the solution is called an iterative method.