PARAMETERIZING CONJUGACY CLASSES OF MAXIMAL UNRAMIFIED TORI
VIA BRUHAT-TITS THEORY

STEPHEN DEBACKER

ABSTRACT. Let \(k \) denote a field with nontrivial discrete valuation. We assume that \(k \) is complete with perfect residue field \(f \). Let \(G \) denote the group of \(k \)-rational points of a reductive, linear algebraic group \(G \) defined over \(k \). A subgroup in \(G \) is said to be unramified if it is a connected reductive subgroup of \(G \) whose reduced Bruhat-Tits building contains a hyperspecial vertex. Let \(\mathcal{C} \) denote the set of \(G \)-conjugacy classes of pairs \((H, x)\) where \(H \) is a maximal rank unramified subgroup of \(G \) and \(x \) is a hyperspecial point in the reduced Bruhat-Tits building of \(H \). Let \(I^c \) denote the set of pairs \((F, H)\) where \(F \) is a facet in the Bruhat-Tits building of \(G \) and \(H \) is a \(f \)-cuspidal maximal rank connected reductive subgroup in \(G_F \) (the connected reductive \(f \)-group associated to \(F \)). There is a natural equivalence relation, to be denoted \(\sim \), on \(I^c \). We show that there is a bijective correspondence between the set \(I^c/\sim \) and \(\mathcal{C} \). From this, we derive a classification of the conjugacy classes of maximal unramified tori in \(G \) and, when \(f \) is finite and \(G \) is unramified, we determine which of these conjugacy classes of tori are stably conjugate.

0. INTRODUCTION

One of the main results of this paper is a uniform parametrization of the conjugacy classes of maximal unramified tori in a reductive \(p \)-adic group. This classification matches conjugacy classes of maximal unramified tori in \(G \) with certain equivalence classes that arise naturally from Bruhat-Tits theory. The motivation for this result comes from harmonic analysis; specifically, from J.-L. Waldspurger’s papers [13, 14]. Using the parametrization scheme discussed in this paper, D. Kazhdan and I [6] have been able to generalize, in a uniform manner, some of the results in [13].

We now discuss the contents of this paper.

Let \(k \) denote a field with nontrivial discrete valuation. We assume that \(k \) is complete with perfect residue field \(f \). Let \(G \) denote the group of \(k \)-rational points of a reductive, linear algebraic group \(G \) defined over \(k \). Let \(G^\circ \) denote the group of \(k \)-rational points of the identity component \(G^\circ \) of \(G \). Let \(\mathcal{B}(G) \) denote the Bruhat-Tits building of \(G^\circ \). We let \(\mathcal{B}^\text{red}(G) \) denote the reduced Bruhat-Tits building of \(G^\circ \).

A subgroup in \(G \) is called unramified if it is a connected reductive \(k \)-subgroup of \(G \) whose reduced building contains a hyperspecial point. Let \(\mathcal{C} \) denote the set of \(G \)-conjugacy classes of

\[Date: \text{October 14, 2002.} \]
\[1991 \text{ Mathematics Subject Classification. Primary 22G25; Secondary 17B45, 20G15.} \]
\[Key words and phrases. Bruhat-Tits building, maximal unramified tori, reductive group. \]
\[Supported by National Science Foundation Postdoctoral Fellowship 98-04375 and Grant number ????. This work was first announced at a conference at Banff and significantly generalized while I visited NUS. I thank \]

PREPRINT
pairs \((H, x)\) where \(H\) is a maximal rank unramified subgroup in \(G\) and \(x\) is a hyperspecial point in \(B^\text{red}(H)\).

Let \(I\) denote the set of pairs \((F, H)\) where \(F\) is a facet in \(B(G)\) and \(H\) is a maximal rank connected reductive \(\mathfrak{f}\)-subgroup in \(G_F\). In \(\S 3.2\) we define on \(I\) an equivalence relation, denoted \(\sim\).

In \(\S 3.3\) we associate to each element \((F, H) \in I\) a conjugacy class \(C(F, H)\) of pairs \((H, x)\) where \(H\) is a maximal rank unramified subgroup of \(G\) and \(x\) is a hyperspecial point in \(B^\text{red}(H)\).

The set \(I\) is too large, so we restrict our attention to the subset \(I^c\) of \(f\)-cuspidal pairs in \(I\). A pair \((F, H) \in I\) is said to be \(f\)-cuspidal if the maximal \(f\)-split torus in \(H\) coincides with the maximal \(f\)-split torus in the center of \(G_F\). (Equivalently, \(H\) is \(f\)-cuspidal in \(G_F\) if and only if \(H\) lies in no proper \(f\)-parabolic subgroup of \(G_F\).)

We now state Theorem 3.4.1, the main result of this paper.

Theorem. There is a bijective correspondence between \(I^c / \sim\) and \(C\) given by the map which sends \((F, H)\) to \(C(F, H)\).

A torus in \(G\) is called unramified if it is an unramified subgroup of \(G\). From Remark 2.1.2, every maximal unramified torus of \(G\) is a full rank unramified subgroup of \(G\). Let \(I^m\) denote the set of pairs \((F, T) \in I^c\) such that \(T\) is a maximal \(f\)-torus in \(G_F\). Let \(C^T\) denote the set of conjugacy classes of maximal unramified tori in \(G\). Since the reduced Bruhat-Tits building of a torus is a point, we immediately derive the following corollary.

Corollary. There is a bijective correspondence between \(I^m / \sim\) and \(C^T\) given by the map which sends \((F, T)\) to \(C(F, T)\).

If our group is connected, reductive, and \(k\)-split, then this Corollary can be derived from some work of Paul Gérardin [8]. If our group is connected, reductive, and unramified, then Waldspurger [13] stated a variant of this Corollary as a hypothesis.

We remark that if \(\mathfrak{f}\) is algebraically closed, then \(C\) and \(I^m / \sim\) both have one element. In this case, the element of \(C\) is the conjugacy class of maximal \(k\)-split tori in \(G\), and \(I^m\) consists of those pairs \((F, T)\) where \(F\) is an alcove in \(B(G)\) and \(T\) is a maximal torus in \(G_F\).

Let \(K\) denote a fixed maximal unramified extension of \(k\). From Remark 2.1.2 a maximal unramified torus in \(G\) is the group of \(k\)-rational points of a maximal \(K\)-split torus in \(G\) which is defined over \(k\). From a theorem of Steinberg, \(G^\circ\) is quasisplit over \(K\). Thus, the centralizer in \(G^\circ\) of a maximal unramified torus in \(G\) is the group of \(k\)-rational points of a maximal \(k\)-torus in \(G\). Since this correspondence is one-to-one, our theorem also provides a classification of the \(G\)-conjugacy classes of maximal \(k\)-tori of \(G\) which arise in this way.

Finally, in the case when \(\mathfrak{f}\) is finite and \(G\) is unramified, we give a description of the stable conjugacy classes of maximal unramified tori in \(G\). I thank Bob Kottwitz for telling me that such a description ought to be possible.

This paper has benefitted from discussions with Jeff Adler, Roman Bezrukavnikov, David Kazhdan, Robert Kottwitz, Amritanshu Prasad, Gopal Prasad, Paul J. Sally, Jr., and Jiu-Kang Yu. It is a pleasure to thank all of these people.
1. NOTATION

In addition to the notation discussed in the introduction, we will require the following.

1.1. Basic notation. Let \(k \) denote a field with nontrivial discrete valuation \(\nu \). We assume that \(k \) is complete and the residue field \(\mathfrak{f} \) is perfect.

Let \(K \) be a fixed maximal unramified extension of \(k \). Let \(\mathfrak{F} \) denote the residue field of \(K \). Note that \(\mathfrak{F} \) is an algebraic closure of \(\mathfrak{f} \).

Let \(G \) be a linear algebraic group defined over \(k \). We assume that the identity component \(G^\circ \) of \(G \) is reductive. We let \(G = G(k) \), the group of \(k \)-rational points of \(G \). Let \(G^\circ = G^\circ(k) \). \(DG^\circ \) will denote the group of \(k \)-rational points of the derived group \(DG^\circ \) of \(G^\circ \).

When we talk about a torus in \(G \), we mean the group of \(k \)-rational points of a \(k \)-torus in \(G^\circ \).

In order to avoid a proliferation of superscripts, we adopt the following convention. We shall call a subgroup of \(G \) a parabolic subgroup of \(G \) provided that it is a parabolic subgroup of \(G^\circ \). We adopt a similar convention with respect to tori and Levi subgroups.

If \(g, h \in G \), then \(ghg^{-1} \).

If a group \(L \) acts on a set \(S \), then \(S^L \) denotes the set of \(L \)-fixed points of \(S \).

1.2. Apartments, buildings, and associated notation. Let \(B(G) = B(G, k) \) denote the (enlarged) Bruhat-Tits building of \(G^\circ \). We identify \(B(G) \) with the \(\Gamma \)-fixed points of \(B(G, K) \), the Bruhat-Tits building of \(G^\circ(K) \). Let \(B^{\text{red}}(G) = B(DG^\circ, k) \) denote the reduced Bruhat-Tits building of \(G^\circ \). According to [11], we have a decomposition \(B(G, k) = B^{\text{red}}(G, k) \times B(Z(G), k) \) where \(Z(G) \) denotes the center of \(G \).

For a \(k \)-Levi subgroup \(M \) of \(G \), we identify \(B(M, k) \) in \(B(G, k) \). There is not a canonical way to do this, but every natural embedding of \(B(M, k) \) in \(B(G, k) \) has the same image.

Given a maximal \(k \)-split torus \(S \) of \(G \) which is defined over \(k \) we have the torus \(S = S(k) \) in \(G \) and the corresponding apartment \(A(S) = A(S, k) \) in \(B(G) \). Let \(T \) be a maximal \(K \)-split \(k \)-torus of \(G \) containing \(S \) [3, Corollaire 5.1.12]. We identify \(A(S, k) \) with \(A(T, K)^T \).

For \(\Omega \subset A(S) \), we let \(A(A(S), \Omega) \) denote the smallest affine subspace of \(A(S) \) containing \(\Omega \).

Suppose \(x \in B(G) \). We will denote the parahoric subgroup of \(G^\circ \) attached to \(x \) by \(G_x \), and we denote its pro-unipotent radical by \(G^+_x \). Note that both \(G_x \) and \(G^+_x \) depend only on the facet of \(B(G) \) to which \(x \) belongs. If \(F \) is a facet in \(B(G) \) and \(x \in F \), then we define \(G_F = G_x \) and \(G^+_F = G^+_x \). Recall that \(G_x \) is a subgroup of \(\text{stab}_{G^\circ}(x) \). For a facet \(F \) in \(B(G) \) the quotient \(G_F/G^+_F \) is the group of \(\mathfrak{f} \)-rational points of a connected reductive group \(G_F \) defined over \(\mathfrak{f} \).

We denote the parahoric subgroup of \(G^\circ(K) \) corresponding to \(x \in B(G, K) \) by \(G(K)_x \). We denote the pro-unipotent radical of \(G(K)_x \) by \(G(K)^+_x \). The subgroups \(G(K)_x \) and \(G(K)^+_x \) depend only on the facet of \(B(G, K) \) to which \(x \) belongs. If \(F \) is a facet in \(B(G, K) \) and \(x \in F \), then we define \(G(K)_F = G(K)_x \) and \(G(K)^+_F = G(K)^+_x \). For a facet \(F \) in \(B(G, K) \), the quotient \(G(K)_F/G(K)^+_F \) is the group of \(\mathfrak{F} \)-rational points of a connected, reductive \(\mathfrak{F} \)-group \(G_F \).
Suppose F is a Γ-invariant facet in $\mathcal{B}(G, K)$. In this case, $F' = F^\Gamma$ is a facet in $\mathcal{B}(G)$. Moreover, we have $G_{F'} = (G(K)_F)^\Gamma$, $G_{F'}^+ = (G(K)_F^+)^\Gamma$, and $G_F = G_{F'}$ (in particular, G_F is defined over f). Sometimes, we will abuse notation and denote by G_F (resp., $G_{F'}^+$, resp., $G(K)_F^+$, resp., $G(K)_F^+$) the group $G_{F'}$ (resp., $G_{F'}^+$, resp., $G(K)_F^+$, resp., $G(K)_F^+$).

A vertex $x \in \mathcal{B}^{\text{red}}(G)$ is said to be hyperspecial provided that x is a Γ-invariant special vertex in $\mathcal{B}^{\text{red}}(G, k)$. Equivalently, a vertex $x \in \mathcal{B}^{\text{red}}(H, k)$ is called hyperspecial provided that the \mathfrak{g}-root system of G_x and the root system of G are isomorphic; in particular, this implies that G is K-split.

If there exists a hyperspecial vertex in $\mathcal{B}^{\text{red}}(G)$, then the group G is called unramified.

2. Maximal rank subgroups over k and f

In this section we show how to move between maximal rank unramified subgroups over k and maximal rank connected reductive subgroups over f.

2.1. Maximal unramified subgroups. We recall that a subgroup H of G is unramified if H is the group of k-rational points of a connected reductive k-subgroup H of G and $\mathcal{B}^{\text{red}}(H, k)$ contains a hyperspecial point. We shall also call such an H an unramified subgroup of G. The following result will be used throughout the remainder of the paper.

Lemma 2.1.1. Suppose H is a maximal rank connected reductive K-split k-subgroup of G. Every maximal K-split k-torus in H is a maximal K-split torus in G.

Proof. Fix a maximal K-split k-torus T in H. (The existence of such a torus follows from [3, Corollaire 5.1.12].)

Let $M = C_G \cdot (T)$. Then M is a K-Levi subgroup of G which is defined over k. Let S' be a maximal k-split torus in M. From [3, Corollaire 5.1.12], there exists a maximal K-split torus $S \subset M$ such that $S' \subset S$ and S is defined over k. Note that S is also a maximal K-split torus in G. Since $S \subset M$, we have $T \subset S$. It is enough to show that $S = T$. Note that $H \cdot S$ is a connected, reductive K-split k-subgroup of G and the rank of $H \cdot S$ equals the rank of S. However, the rank of S is greater than or equal to that of T. Since H was chosen to have maximal rank, we conclude that $S = T$. \hfill \Box

Remark 2.1.2. In particular, the above lemma shows that every maximal K-split k-torus in G is a maximal K-split torus in G.

2.2. Some results about maximal unramified tori. We collect some facts concerning maximal unramified tori.

Lemma 2.2.1. Suppose T is a maximal K-split torus in G which is defined over k. Let T denote the group of k-rational points of T. There is a maximal k-split torus S in G such that $\mathcal{B}(T)$ is an affine subspace of $A(S, k)$.

Proof. From [1, Proposition 8.15] we can write $T = T_s \cdot T_a$ where T_s the maximal k-split torus in T and T_a is the maximal k-anisotropic subtorus of T. Let $M = C_G \cdot (T_s)$. Then $T \subset M$.

\footnote{Check in Corvalis to make sure that you’ve got this 100%}
and M is a k-Levi subgroup. Let M denote the group of k-rational points of M. We have that the image of $B(T)$ in $B^\text{red}(M)$ is a point, call it x_T. Let S be a maximal k-split torus in M such that the image (apartment) of $A(S, k)$ in $B^\text{red}(M)$ contains x_T. Since $T_s \subset S$, we have $B(T) \subset A(S, k)$. □

Lemma 2.2.2. Suppose T_1 and T_2 are maximal K-split tori of G which are defined over k. If F is a Γ-invariant facet in $A(T_1, K) \cap A(T_2, K)$ and the images of $T_1(K) \cap G(K)_F$ and $T_2(K) \cap G(K)_F$ in $G_F(\mathfrak{F})$ coincide, then T_1 and T_2 are G^+_F-conjugate.

Proof. Let T denote the maximal \mathfrak{f}-torus in G_F whose group of \mathfrak{F}-rational points is the image of $T_1(K) \cap G(K)_F$ in $G_F(\mathfrak{F})$. Note that T is defined over \mathfrak{f}.

Let Z denote the centralizer of T_1 in G°. The group Z is a K-Levi subgroup (and maximal k-torus) of G which is defined over k. Note that $B(Z, K) = A(T_1, K)$ and so for all facets F in $A(T_1, K)$, we have $Z(K)_F = Z(K) \cap G(K)_F$ and $Z(K)_F^{+} = Z(K) \cap G(K)_F^{+}$.

There exists an $h \in G(K)_F$ such that $hT_1 = T_2$. Let \bar{h} denote the image of h in $G_F(\mathfrak{F})$. By hypothesis, $\bar{h}T = T$. Thus, $\bar{h} \in (N_G(T))(\mathfrak{F})$. Consequently, there exist $n \in (N_G(T_1))(K) \cap G(K)_F$ and $g \in G(K)_F^{+}$ such that $h = g n$. We have $T_2 = hT_1 = gT_1$.

For $\gamma \in \Gamma$, let $c_g(\gamma) := g^{-1}(g)g$; c_g is a one-cocycle. We will show that $c_g(\gamma) \in Z(K)_F^{+}$ for all $\gamma \in \Gamma$. Fix $\gamma \in \Gamma$. Since F is Γ-stable and $g \in G(K)_F^{+}$, we have $c_g(\gamma) \in G(K)_F^{+}$.

Since $c_g(\gamma)T_1 = T_1$, we have $c_g(\gamma) \in N_{G^0}(T_1)(K)$. Thus $A(T_1, K)$ is $c_g(\gamma)$-stable. If C is an alcove in $A(T_1, K)$ such that $F \subset C$, then $c_g(\gamma)$ fixes C point-wise and therefore $c_g(\gamma)$ fixes $A(T_1, K)$. Thus, we conclude that $c_g(\gamma) \in Z(K)_F^{+}$.

Since $H^1(\Gamma, Z(K)_F^{+})$ is trivial, there exists $z \in Z(K)_F^{+}$ such that gz is fixed by Γ. We have $g^zT_1 = T_2$ and $gz \in (G(K)_F^{+})^\Gamma = G_F^\Gamma$. □

Suppose $(F, T) \in I$ with T a torus. Let F' be the facet in $B(G, K)$ whose set of Γ-fixed points is F. In the final paragraph of the proof of [3, Proposition 5.1.10] Bruhat and Tits use [7, Exp. XI, Cor. 4.2] to show that there exists a maximal K-split torus T in G such that T is defined over k, the apartment $A(T, K)$ contains F, and the image of $T(K) \cap G(K)_F$ in $G_F(\mathfrak{F}) = G_F^\Gamma(\mathfrak{F})$ is $T(\mathfrak{F})$. We record this result in the following lemma.

Lemma 2.2.3. If $(F, T) \in I$ with T a torus, then there exists a maximal K-split torus T in G such that T is defined over k, the apartment $A(T, K)$ contains F, and the image of $T(K) \cap G(K)_F$ in $G_F(\mathfrak{F})$ is $T(\mathfrak{F})$. □

2.3. **From maximal rank unramified subgroups of G to connected reductive \mathfrak{f}-groups.** Suppose that H is a maximal rank unramified subgroup of G. We identify $B(H, K)$ with its image in $B(G, K)$. (As usual, there does not exist a canonical embedding of $B(H, K)$ in $B(G, K)$, but the image of any natural embedding is independent of the embedding.) We therefore have

$$B(H) = B(H, K)^\Gamma \subset B(G, K)^\Gamma = B(G).$$

We now collect some facts about $B(H)$.

Lemma 2.3.1. Suppose H is a maximal rank unramified subgroup of G. Let H denote the group of k-rational points of H.
Remark Z is contained in the center of G. Since Z and let H be a subgroup in B which is contained in B from the work of Bruhat and Tits [2, 3].

Proof. “(1)”: Since B(H) is the Bruhat-Tits building of H, the first half of the statement follows from the work of Bruhat and Tits [2, 3].

For any Γ-invariant facet F of B(G, K), we have FΓ = F ∩ B(G) is a facet of B(G). Consequently, for any Γ-invariant facet F of B(H, K) ⊂ B(G, K), we have that FΓ is a facet of B(G) which is contained in B(H).

“(2)”: Suppose F is a facet in B(H). Let H be the maximal rank connected reductive f-subgroup in GF corresponding to the image of H(K) ∩ G(K)F in GF(F). We have (F, H) ∈ I.

Now suppose that F is a maximal facet in the preimage in B(H) of a facet in Bred(H). Choose a subgroup H in GF as in the previous paragraph.

Let S′ be a maximal k-split torus in H so that F ⊂ A(S′, k) ⊂ B(H, k). Let S be a maximal k-split torus in B(G) such that S′ ⊂ S. Let Z denote the maximal k-split torus in the center of H and let Z ⊂ GF denote the split f-torus whose group of F-rational points coincides with the image of Z(K) ∩ G(K)F in GF(F). We have

Z ⊂ S′ ⊂ S

and we may, in the natural way, identify

B(Z, k) ⊂ B(S′, k) ⊂ B(S, k) = A(S, k).

Since F is a maximal facet in the preimage in B(H) = Bred(H) × B(Z, k), for all affine roots ψ of G with respect to S, k, and ν, if ψ is constant on F, then ψ is constant on B(Z, k). Therefore, Z is contained in the center of GF and so H cannot lie in a proper parabolic f-subgroup of GF.

“(3)”: This is clear. □

Remark 2.3.2. We maintain the notation used in the proof of (2) above.

(1) The torus Z is the maximal f-split torus in the center of GF exactly when F is a maximal facet in the preimage in B(H) of a vertex in Bred(H).

(2) If H is a maximal K-split k-torus in G, then H is a maximal f-torus in GF.

The previous lemma gives us a way to associate to a pair (H, x), with H a maximal rank unramified subgroup in G and x ∈ Bred(H) hyperspecial, an element of Ic.

2.4. From subgroups over f to unramified subgroups over k.

Lemma 2.4.1. Suppose H1 and H2 are maximal rank unramified subgroups of G. If F is a Γ-invariant facet in B(H1, K) ∩ B(H2, K) which projects to a Γ-fixed special vertex in Bred(H1, K)
Proof. Let H denote the maximal rank reductive subgroup in G_F whose group of \mathfrak{F}-rational points is the image of $H_1(K) \cap G(K)_F$ in $G_F(\mathfrak{F})$. Note that H is defined over \mathfrak{F}. Let T be a maximal \mathfrak{F}-torus in H which contains a maximal \mathfrak{F}-split torus of H. Let $\Phi(H, T)$ denote the \mathfrak{F}-root system of H with respect to T. As in Lemma 2.2.3, we choose a maximal K-split k-torus T_i in H_i lifting T. Note that, since the image of F in $B^{\text{red}}(H_i, k)$ is hyperspecial, H_i is completely determined by $\Phi(H, T)$ and T_i. From Lemma 2.2.2, we conclude that H_1 and H_2 are G_F^+-conjugate. \qed

Lemma 2.4.2. Suppose F is a facet in $B(G)$ and H is a maximal rank connected reductive \mathfrak{F}-subgroup of G_F. There exists a maximal rank unramified H in G such that:

1. The facet F belongs to $B(H, k)$.

2. The image of $H(K) \cap G(K)_F$ in $G_F(\mathfrak{F})$ is the group of \mathfrak{F}-rational points of H.

3. The image of F in $B^{\text{red}}(H, k)$ is a special vertex, x_F.

Proof. Let T be a maximal \mathfrak{F}-torus in H (and hence in G_F) which contains a maximal \mathfrak{F}-split torus of H. Let $\Phi(H, T)$ denote the \mathfrak{F}-root system of H with respect to T. As in Lemma 2.2.3, let T be a lift of T to a maximal K-split k-torus T in G. We think of $\Phi(H, T)$ as a subset of $\Phi(G, T)$, the K-root system of G with respect to T. Let H be the K-split full rank subgroup of G whose group of K-rational points is generated by $T(K)$ and the root groups in $G(K)$ corresponding to elements of $\Phi(H, T)$. Note that H is defined over k, and, by construction, the image of $F \subset B(H, K)$ in $B^{\text{red}}(H, K)$ is a Γ-fixed special vertex. The lemma follows. \qed

Remark 2.4.3. If, in the statement of Lemma 2.4.2, H is also assumed to be \mathfrak{F}-cuspidal, then F is a maximal facet in the preimage in $B(H, k)$ of x_F.

3. The parameterization

In this section, we present a parameterization of C via Bruhat-Tits theory.

3.1. Strong associativity. Following [9, 10], in [5, §2.3] the concept of strong associativity is developed. We recall the definition and some of its consequences.

Definition 3.1.1. Two facets F_1 and F_2 of $B(G)$ are strongly associated if for all apartments \mathcal{A} containing F_1 and F_2, we have

$$A(\mathcal{A}, F_1) = A(\mathcal{A}, F_2).$$

Remark 3.1.2. Two facets F_1, F_2 of $B(G)$ are strongly associated if and only if there exists an apartment \mathcal{A} containing F_1 and F_2 such that $A(\mathcal{A}, F_1) = A(\mathcal{A}, F_2)$. See [5, Lemma 2.3.3].

Remark 3.1.3. Suppose F_1 and F_2 are strongly associated facets in $B(G)$. There is an identification of G_{F_1} with G_{F_2}. Namely, the natural Γ-equivariant map

$$G(K)_{F_1} \cap G(K)_{F_2} \rightarrow G_{F_1}(\mathfrak{F})$$

is surjective with kernel $G(K)_{F_1} \cap G(K)_{F_2} = G(K)_{F_1} \cap G(K)_{F_2} = G(K)_{F_1} \cap G(K)_{F_2}$. See, for example, [5, Lemma 2.5.1].
Definition 3.1.4. If F_1 and F_2 are strongly associated facets in $B(G)$, then we denote the natural identification of G_{F_1} and G_{F_2} introduced above by $G_{F_1} \overset{\sim}{=} G_{F_2}$.

3.2. An equivalence relation on I. We first consider the action of G on I. Suppose $g \in G$ and $(F, H) \in I$. From Lemma 2.4.2 there exists a maximal rank unramified subgroup H of G such that the building of $B(H)$ contains F, the image of $H(K) \cap G(K)_F$ in $G_F(\mathfrak{F})$ is $H(\mathfrak{F})$, and the image of F in $B^\text{red}(H)$ is a hyperspecial vertex. Define

$$g(F, H) := (gF, g^H)$$

where g^H is the maximal rank connected reductive F-group in G_{gF} whose group of \mathfrak{F}-rational points coincides with the image of $g^H(K) \cap G(K)_{gF}$ in $G_{gF}(\mathfrak{F})$. From Lemma 2.4.1, this definition is independent of the unramified subgroup H we choose to represent H.

We are now prepared to introduce a relation on I.

Definition 3.2.1. Suppose (F_1, H_1) and (F_2, H_2) are two elements of I. We will write $(F_1, H_1) \sim (F_2, H_2)$ provided that there exist an apartment A in $B(G)$ and $g \in G$ such that

1. $\emptyset \neq A(A_1, F_1) = A(A_2, gF_2)$ and
2. $H_1 \overset{i}{=} g^H_2$ in $G_{F_1} \overset{i}{=} G_{gF_2}$.

Lemma 3.2.2. The relation \sim on I is an equivalence relation.

Proof. We will verify that the relation is transitive. The proofs that the relation is reflexive and symmetric are easier and left to the reader.

Suppose $(F_i, H_i) \in I$ for $i = 1, 2, 3$. Suppose $(F_1, H_1) \sim (F_2, H_2)$ and $(F_2, H_2) \sim (F_3, H_3)$. We want to show $(F_1, H_1) \sim (F_3, H_3)$.

There exist $g_2, g_3 \in G$ and apartments A_{12} and A_{23} in $B(G)$ such that

1. $\emptyset \neq A(A_{12}, F_1) = A(A_{12}, g_2F_2)$
2. $\emptyset \neq A(A_{23}, F_2) = A(A_{23}, g_3F_3)$

and

1. $H_1 \overset{i}{=} g^H_2$ in $G_{F_1} \overset{i}{=} G_{g_2F_2}$
2. $H_2 \overset{i}{=} g^H_3$ in $G_{F_2} \overset{i}{=} G_{g_3F_3}$

Since $g_2F_2 \subset A_{12} \cap g_2A_{23}$, there exists an element $h \in G_{g_2F_2}$ such that $hg_2A_{23} = A_{12}$. We have

$$\emptyset \neq A(A_{12}, F_1) = A(A_{12}, g_2F_2) = A(hg_2A_{23}, h g_2 F_2) = h g_2 A(A_{23}, F_2) = h g_2 A(A_{23}, g_3 F_3) = A(A_{12}, h g_2 g_3 F_3).$$

Moreover, we have that $G_{F_1} \cap G_{g_2F_2} \cap G_{h g_2 g_3 F_3}$ surjects, under the natural map, onto $G_{F_1}(f)$ (resp., $G_{g_2F_2}(f)$, resp., $G_{h g_2 g_3 F_3}(f)$). Thus, there exists $h' \in G_{F_1} \cap G_{g_2F_2} \cap G_{h g_2 g_3 F_3}$ such that

$$H \overset{i}{=} g^H_2 \overset{i}{=} h' g^H_2 \overset{i}{=} h' h g^H_3 \text{ in } G_{F_1} \overset{i}{=} G_{g_2F_2} \overset{i}{=} G_{g_2F_2} \overset{i}{=} G_{h g_2 g_3 F_3}. \quad \Box$$
3.3. **A map from I/ \sim to C.** From Lemmas 2.4.1 and 2.4.2, the following definition makes sense.

Definition 3.3.1. Suppose $(F, H) \in I$. Let H be any maximal unramified subgroup of G such that the building $B(H, K)$ contains F, the image of $H(K) \cap G(K)_F$ in $G_F(\mathfrak{F})$ is $H(\mathfrak{F})$, and the image of F in $B^{\text{red}}(H, k)$ is a hyperspecial vertex x_F. Define $C(F, H) \in C$ by setting $C(F, H)$ equal to the G-conjugacy class of the pair $(H(k), x_F)$.

Remark 3.3.2. If $g \in G$ and $(F, H) \in I$, then $C(F, H) = C(gF, gH)$.

Lemma 3.3.3. The map from I to C which sends $(F, H) \in I$ to $C(F, H)$ induces a well-defined map from I/ \sim to C.

Proof. Suppose (F_1, H_1) and (F_2, H_2) are two elements of I. We need to show that if $(F_1, H_1) \sim (F_2, H_2)$, then $C(F_1, H_1) = C(F_2, H_2)$.

Since $(F_1, H_1) \sim (F_2, H_2)$, there exist $g \in G$ and an apartment \mathcal{A} in $B(G)$ such that

$$\emptyset \neq A(\mathcal{A}, F_1) = A(\mathcal{A}, gF_2)$$

and

$$H_1 \overset{i}{=} gH_2 \text{ in } G_{F_1} \overset{i}{=} G_{F_2}.$$

From Remark 3.3.2, we can assume that $g = 1$.

From Lemma 2.4.2 there exists a maximal rank unramified subgroup H_2 of G such that $F_2 \subset B(H_2, K)$, the image of $H_2(K) \cap G(K)_{F_2}$ in $G_{F_2}(\mathfrak{F})$ coincides with $H_2(\mathfrak{F})$, and the image of F_2 in $B^{\text{red}}(H, k)$ is hyperspecial. Note that $C(F_2, H_2)$ is the G-conjugacy class of $(H_2(k), x_{F_2})$ where x_{F_2} is the image of F_2 in $B^{\text{red}}(H)$. Let T_2 be a maximal \mathfrak{f}-torus in H_2. From Lemma 2.2.3 we can choose a maximal K-split k-torus T_2 in H_2 lifting T_2 such that $F_2 \subset B(T_2, k)$. It follows from Lemma 2.2.1 that we can choose $h \in G_{F_2}$ such that $B(hT_2, k) \subset \mathcal{A}$. Since $\emptyset \neq A(\mathcal{A}, F_1) = A(\mathcal{A}, F_2) \subset B(hT_2, k)$, we conclude that $F_1 \subset B(hT_2, k) \subset B(hH_2, k)$.

Let H' denote the maximal rank connected reductive \mathfrak{f}-subgroup in G_{F_1} such that the image of $hH_2(K) \cap G(K)_{F_1}$ in $G_{F_1}(\mathfrak{F})$ coincides with $H'(\mathfrak{F})$. We have

$$H' \overset{i}{=} hH_2 \text{ in } G_{F_1} \overset{i}{=} G_{F_2}$$

and

$$H_1 \overset{i}{=} H_2 \text{ in } G_{F_1} \overset{i}{=} G_{F_2}.$$

Thus, there exists $h' \in G_{F_1} \cap G_{F_2}$ such that

$$h' H_1 \overset{i}{=} h' H_2 \overset{i}{=} h H_2 \overset{i}{=} H' \text{ in } G_{F_1} \overset{i}{=} G_{F_2} \overset{i}{=} G_{F_2} \overset{i}{=} G_{F_1}.$$

In other words, $h' H_1 = H'$ in G_{F_1}. We conclude from Lemma 2.4.1 that $C(F_1, H_1)$ is the G-conjugacy class of $(h')^{-1}hH_2(k)$, i.e., $C(F_1, H_1) = C(F_2, H_2)$.

\square
3.4. A bijective correspondence. We now prove the main result of this paper.

Theorem 3.4.1. There is a bijective correspondence between I^c / \sim and \mathcal{C} given by the map sending (F, H) to $C(F, H)$.

Proof. From Lemma 3.3.3, this map is well defined. From Lemma 2.3.1 (2) and Lemma 2.4.2 the map is surjective. It remains to show that the map is injective.

Suppose (F_1, H_1) and (F_2, H_2) are pairs in I^c such that $C(F_1, H_1) = C(F_2, H_2)$. We need to show that $(F_1, H_1) \sim (F_2, H_2)$.

For $i = 1, 2$, from Lemma 2.4.2 we can choose a maximal unramified subgroup H_i in G such that the building $B(H_i, K)$ contains F_i, the image of $H_i(K) \cap G(K)_F$ in $G_{F_i}(\mathfrak{f})$ is $H_i(\mathfrak{f})$, the image of F_i in $B_{\text{red}}(H)$ is hyperspecial, and the G-conjugacy class of the pair $(H_i(k), x_{F_i})$ is $C(F_i, H_i)$. Since $C(F_1, H_1) = C(F_2, H_2)$, there exists a $g \in G$ such that $g \cdot H_2 = H_1$ and $g \cdot x_{F_2} = x_{F_1}$ in $B_{\text{red}}(H_1, k)$. Let $H = g \cdot H_2 = H_1$ and let $H = H(k)$.

Note that both F_1 and $g \cdot F_2$ lie in $B(H)$. Moreover, both F_1 and $g \cdot F_2$ lie in the preimage in $B(H)$ of $x_{F_1} \in B_{\text{red}}(H)$. Since (F_1, H_1) is an \mathfrak{f}-cuspidal pair, from Remark 2.4.3 we have that F_1 is a maximal facet in the preimage in $B(H)$ of $x_{F_1} \in B_{\text{red}}(H)$. Similarly, $g \cdot F_2$ is a maximal facet in the preimage in $B(H)$ of $x_{F_1} \in B_{\text{red}}(H)$. From Lemma 2.3.1 (3), the facets F_1 and $g \cdot F_2$ are strongly associated. Since the image of $H(K) \cap G(K)_{F_1} \cap G(K)_{g \cdot F_2}$ in $G_{F_1}(\mathfrak{f})$ (resp., $G_{g \cdot F_2}(\mathfrak{f})$) is $H_1(\mathfrak{f})$ (resp., $g \cdot H_2(\mathfrak{f})$), we have

$$H_1 \sim g \cdot H_2 \text{ in } G_{F_1} \sim g \cdot G_{F_2}.$$

We immediately have:

Corollary 3.4.2. There is a bijective correspondence between I^m / \sim and \mathcal{C}^T given by the map sending (F, T) to $C(F, T)$.

4. Stable conjugacy classes of maximal unramified tori

We say that two maximal k-tori T_1 and T_2 in G are *stably conjugate* provided that there exists $g \in G(\tilde{k})$ such that $T_i(k) = g(T_2(k))$. This is equivalent to saying that there exists a strongly regular element $t \in T_2(k)$ (that is, a regular semisimple element whose centralizer is connected) such that $g \cdot t \in T_1(k)$.

For the remainder of this paper, we assume that \mathfrak{f} is finite and G is unramified. From for example [12, ??], this is equivalent to assuming that \mathfrak{f} is finite and G is k-quasisplit and K-split. Under these assumptions, we have that every maximal unramified torus of G is also an unramified maximal torus of G, and *vice-versa*.

Suppose that T_i ($i = 1, 2$) is a maximal unramified torus in G. From Hilbert’s Theorem 90, if $t_1 \in T_1(k)$ and $t_2 \in T_2(k)$ are strongly regular elements which are conjugate by an element of $G(\tilde{k})$, then t_1 and t_2 are conjugate by an element of $T(K)$. Consequently, two maximal unramified tori T_1 and T_2 of G are stably conjugate if and only if there exists a $g \in G(K)$ such that $T_1(k) = g(T_2(k))$.

The goal of this section is to provide a nice parameterization of the stable conjugacy classes of maximal unramified tori in G.
Thus, it is enough to show that

Fix a strongly regular element \(\sigma \) such that

we conclude that \(g \) and \(g' \) are maximal unramified tori in \(G \) and \(G' \) respectively. Let \(W \) denote the Weyl group \(N_G(T)(K)/T(K) \) which is naturally isomorphic to \(N_{G'}(T)({\mathfrak{g}})/T({\mathfrak{g}}) \).

Choose a topological generator \(\sigma \in \Gamma \) for \(\Gamma \). Since \(\sigma \) preserves \(T \), it acts on \(W \). Two elements \(w_1, w_2 \in W \) are \(\sigma \)-conjugate provided that there exists \(w' \in W \) such that \(w'w_1\sigma(w')^{-1} = w_2 \). One can check that \(\sigma \)-conjugacy defines an equivalence relation on \(W \). The partitions associated to this equivalence relation are called \(\sigma \)-conjugacy classes.

Theorem 4.0.3. Suppose \(\mathfrak{f} \) is finite and \(G \) is unramified. The stable conjugacy classes of maximal unramified tori in \(G \) are in natural bijective correspondence with the \(\sigma \)-conjugacy classes in \(W \).

Proof. Since there is a single \(G(K) \)-conjugacy class of maximal \(K \)-split tori in \(G \), all maximal unramified tori in \(G \) are \(G(K) \)-conjugate to \(T \). If \(g \in G(K) \) and \(gT \) is a maximal unramified torus in \(G \), then \(gT = \sigma(gT) = \sigma(g)T \). Consequently, \(\sigma^{-1}g \in N_G(T)(K) \). Note that if \(g, g' \in G(K) \) such that \(gT = g'T \) and \(gT \) is defined over \(k \), then there exists an \(n \in N_G(T)(K) \) such that \(g = g'n \) and so \(\sigma^{-1}g = \sigma(n)^{-1}\sigma(g')^{-1}g'n \). In this way, we get a well-defined map \(\omega \) from maximal unramified tori in \(G \) to \(\sigma \)-conjugacy classes in \(W \); namely, \(\omega(gT) \) is the \(\sigma \)-conjugacy class of \(\sigma^{-1}gT(K) \).

Suppose \(g, g' \in G(K) \). We first show that if \(gT \) and \(g'T \) are two stably conjugate maximal unramified tori in \(G \), then \(\omega(gT) = \omega(g'T) \). Since \(gT \) and \(g'T \) are stably conjugate, there exist \(h \in G(K) \) and a strongly regular \(t \in T(K) \) such that \(gT = (gT)(k) \) and \(hT = (g'T)(k) \). This implies that \(\sigma(h)^{-1}h \in (gT)(K) \). Since

\[
\sigma(hg)^{-1}h \in (gT)(K) = (\sigma(g)^{-1}h) \cdot gT(K)
\]

we conclude that \(\omega(gT) = \omega(hgT) \). Since \(hgT = g'T \), from the previous paragraph we have \(\omega(hgT) = \omega(g'T) \). Consequently, \(\omega(gT) = \omega(g'T) \).

Therefore, we have a map from stable conjugacy classes of maximal unramified tori of \(G \) to \(\sigma \)-conjugacy classes in \(W \). We now show that this map is injective. Suppose \(g, g' \in G(K) \) such that \(gT \) and \(g'T \) are maximal unramified tori in \(G \) and \(\omega(gT) = \omega(g'T) \). By replacing \(g' \) with \(g'n \) for some \(n \in N_G(T)(K) \), we may assume that

\[
\sigma(g)^{-1}g = \sigma(g')^{-1}g'T(K)
\]

Fix a strongly regular element \(t \in (gT)(k) \). It will be enough to show that \(g'g^{-1}t \in (g'T)(k) \). Thus, it is enough to show

\[
g'g^{-1}t = \sigma(g')\sigma(g)^{-1}t
\]

However, Equation (2) is valid if and only if

\[
\sigma(g)^{-1}t = (\sigma(g')^{-1}g')^{-1}t.
\]
Since \(g^{-1}t \in T(K) \), it follows from Equation (1) that the map is injective.

Finally, we must show that the map is surjective. From [4, ??] for every \(\sigma \)-conjugacy class \(O \) in \(W \), there exists a \(\tilde{g} \in G_x(\mathfrak{F}) \) such that \(g^T \) is a maximal \(\mathfrak{f} \)-torus in \(G_x \) and the image of \(\sigma(\tilde{g})^{-1}\tilde{g} \) in \(W \) lies in \(O \). As in Lemma 2.2.3 we can lift \(g^T \) to a maximal unramified torus \(T' \) in \(G \) with \(x \in B(T', k) = A(T', K)^\Gamma \). Since \(x \in A(T', K) \cap A(T, K) \), there exists a \(g \in G(K)_x \) such that \(T' = g^T \). Let \(\tilde{g} \) denote the image of \(g \) in \(G_x(\mathfrak{F}) \). Since \(g^T = \tilde{g}^T \), from [4, ??], the image of \(\sigma(\tilde{g})^{-1}\tilde{g} \) lies in \(O \). Now, from the proof of Lemma 2.2.2, the tori \(\sigma(\tilde{g})^{-1}g^T \) and \(T \) are \(G(K)_x^+ \)-conjugate. Since \(H^1(\Gamma, G(K)_x^+) \) is trivial, we conclude that we may assume that \(\sigma(\tilde{g})^{-1}g^T = T \) Thus, \(\omega(g^T) = O \).

\begin{remark}
We continue to assume that the hypotheses of Theorem 4.0.3 are valid. Suppose \((F_i, T_i) \in I^m\) for \(i = 1, 2 \). The proof of Theorem 4.0.3 yields the following simple criterion for determining if \(C(F_1, T_1) \) and \(C(F_2, T_2) \) lie in the same stable conjugacy class. With out loss of generality, we assume that \(F_1, F_2 \subseteq A(S, k) \). Let \(T_i \) denote the maximal \(\mathfrak{f} \)-torus in \(G_{F_i} \) corresponding to \(T \). Let \(W_i := N_{G_{F_i}}(T_i)(\mathfrak{F})/T_i(\mathfrak{F}) \). Let \(O_i \) be the \(\sigma \)-conjugacy class in \(W_i \) parameterizing the \(G_{F_i}(\mathfrak{f}) \)-conjugacy class of \(T_i(\mathfrak{f}) \). Let \(O_i \) be the \(\sigma \)-conjugacy class in \(W \) \(N_G(T)(K) \) obtained by lifting \(O_i \), into \(N_G(T)(K) \) and then modding out by \(T(K) \). We have \(C(F_1, T_1) \) and \(C(F_2, T_2) \) lie in the same stable conjugacy class if and only if \(O_1 = O_2 \).
\end{remark}

\section*{References}

E-mail address: debacker@math.harvard.edu

Harvard University, Cambridge, MA 02138