1. Call two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on a vector space V are *equivalent* if there exists a real number $C > 0$ such that for all $v \in V$,

$$\frac{1}{C}\|v\|_1 \leq \|v\|_2 \leq C\|v\|_1.$$

(a) Let V be a vector space. Show that equivalence of norms defines an equivalence relation on the space of all norms on V.

(b) Now consider $V \mathbb{R}^n$. Let $\|v\|_1$ be L^1 norm on \mathbb{R}^n. Let $\|\cdot\|_2$ be another norm. Show that there exists a real number $C > 0$ such that for all $v \in V$,

$$\|v\|_2 \leq C\|v\|_1.$$

(c) Show that $v \mapsto \|v\|_2, \mathbb{R}^n \mapsto \mathbb{R}$ defines a continuous function on \mathbb{R}^n with respect to the L^1-metric.

(d) Show that any two norms on \mathbb{R}^n are equivalent.

2. Extend the notion of uniform continuity to metric spaces.

3. Let X be a compact metric space. Let $C^0(X)$ be the set of continuous real valued functions endowed with the sup norm. Show that $C^0(X)$ is a complete metric space.

4. Recall that the L^1-metric on $[0, 1]$ is induced by the norm

$$\|f\|_1 = \int_{[0, 1]} |f(x)| dx$$

where f is a continuous function. As usual, set $d(f, g) = \|f - g\|_1$. This is called the L^1 metric. Is $C^0(X)$ with this L^1 metric a complete metric space?
5. Let X and Y be metric spaces. A function $f : X \mapsto Y$ is called a \textit{Lipschitz function} if there exists a constant $C > 0$ such that for all $x_1, x_2 \in X$,
\[d(f(x_1), f(x_2)) \leq C d(x_1, x_2). \]
We call such C a Lipschitz constant for f.

(a) Show that Lipschitz maps are uniformly continuous. Is the converse true?

(b) Let $f_n : X \mapsto Y$ be Lipschitz maps with common Lipschitz constant C. Suppose that the f_n converge uniformly to f. Is f Lipschitz? What if we only assume that the f_n are Lipschitz?

6. When are differentiable $f : \mathbb{R}^n \mapsto \mathbb{R}^m$ Lipschitz?