Homework 9
for Friday, April 11

(1) Suppose M is a simply connected complete manifold of nonpositive curvature. Show that every geodesic triangle satisfies the law of cosines
$$c^2 \geq a^2 + b^2 - 2ab \cos \gamma$$
where a, b, c are the lengths of the sides and γ is the angle opposite a. Is the assumption that M be simply connected needed?

(2) Suppose M is a simply connected complete manifold of nonpositive curvature.
(a) Let γ be a geodesic in M. For $p \in M$, show that the function
$$t \mapsto d(p, \gamma(t))$$
is strictly convex.
(b) Let $N \subset M$ be a connected totally geodesic submanifold. Show that for all $p \in M$, there is a unique closest point $\pi(p) \in N$. Show that $\pi : M \mapsto N$ is a distance non-increasing projection.

(3) Let M be a complete Riemannian manifold with sectional curvature $K \leq 1$. Suppose γ_0 and γ_1 are distinct geodesics connecting two points p and q. Suppose $l(\gamma_0) \leq l(\gamma_1)$. Suppose γ_0 is homotopic to γ_1 via a continuous family of differentiable curves α_s for $0 \leq s \leq 1$.
Show that there exists $0 \leq s_0 \leq 1$ such that
$$l(\alpha_{s_0}) \geq 2\pi.$$
Hint: There is a long hint in do Carmo, p. 236.

(4) Let $\pi : \tilde{M} \mapsto M$ be a Riemannian submersion. Call $v \in T_{\tilde{p}}\tilde{M}$ horizontal if v is perpendicular to the the fibre of $\pi^{-1}(\pi(p))$. For a vector field x on M, define its horizontal lift \tilde{X} on \tilde{M} by requiring that $\tilde{X}(\tilde{p})$ is horizontal for all $\tilde{p} \in \tilde{M}$.
(a) Let ∇ and $\tilde{\nabla}$ denote the Riemannian connections of M and \tilde{M} respectively. Show that
$$\tilde{\nabla}_X \tilde{Y} = (\nabla_X \tilde{Y}) + \frac{1}{2} [\tilde{X}, \tilde{Y}]^v$$
where x^v denotes the vertical (tangent to the fiber) component of a tangent vector x to \tilde{M}.
(b) Show that $[\tilde{X}, \tilde{Y}]^v(\tilde{p})$ depends only on $\tilde{X}(\tilde{p})$ and $\tilde{Y}(\tilde{p})$.