(1) Let M be a connected manifold, p and q in M. Show that there exists a diffeomorphism ϕ such that $\phi(p) = q$. Hint: Might help to use flows.

(2) (a) Let M be a manifold with boundary. Then its boundary ∂M by definition consists of the points which have coordinate charts in to \bar{H}^n and are mapped to the the boundary $\{(x_1, \ldots, x_{n-1}, 0) \}$ of H^n. Show that this is well defined and that ∂M is a manifold.

(b) Let $D^2 = \{x \in \mathbb{R}^2 \mid \|x\| \leq 1\}$, called the 2-dimensional disk. Show that D^2 is a manifold with boundary.

(3) Let $w \in \mathbb{R}^n$ be a fixed vector. On \mathbb{R}^n, define a vector field X by $X(p) = w$. Show that X is still well-defined on $T^n = \mathbb{R}^n / \mathbb{Z}^n$, the n-dimensional torus. Find the global flow on the n-torus generated by X.

(4) Let A be an $n \times n$ matrix. Define a vector field $X(v) := A \cdot v$ on \mathbb{R}^n.

(a) Show that the solution curve c for X with initial condition p is given by $c(t) = \exp(tA)p$.

(b) What is the flow generated by X?

(c) If $\{v_i\}$ is a basis of eigenvectors of A with (real) eigenvector λ_i, write the solution curves in terms of the v_i.

(5) Let X be a smooth vector field on a compact manifold M, an let $\Phi_t : M \rightarrow M$ be its (global) flow. Suppose that $X(p) = 0$ for some point $p \in M$. Show that for all t, $\Phi_t(p) = 0$. How about the converse?