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INTRODUCTION

This survey is dedicated to Professor Anatole Katok on the occasion of his sixtieth birthday. He
has made numerous important contributions to dynamics and ergodic theory proper. During the last
two decades, he was one of the key researchers in the field of rigidity or geometric rigidity. My goal
here is to give a bird’s eye view of this subject with particular attention to the many ideas and topics
Professor Katok has been directly involved with.

Rigidity theory is now in its fifth decade. It started with conjectures of A. Selberg and the early
local rigidity theorems of A. Weil as well as E. Calabi and E. Vesentini in the early sixties. Mostow’s
celebrated Strong Rigidity Theorem in 1968 was a spectacular breakthrough and inspired whole new
areas of research for rigidity phenomena in geometry, group theory and dynamics. After a brief
review of this early history, we will discuss these new areas and topics.

Rigidity theory by now is a large field with many branches and connections, and it is impossible
to even just mention all important developments in one short survey. We refer to [91, 145, 146, 160,
190] for more intensive introductions to this field, and will refer to other more specialized surveys
as we go along.

EARLY RIGIDITY THEORY

In 1960, A. Selberg made the beautiful discovery that up to conjugation the fundamental groups
of certain compact locally symmetric spaces are always defined over the algebraic numbers. Thus
it is implausible that such groups can be deformed. More precisely, we say that a subgroupΓ of
another groupG is deformation rigidin G if for any continuous pathρt of embeddings ofΓ into
G starting withρ0 = id, ρt is conjugate toρ0. E. Calabi and E. Vesentini, and then A. Weil in full
generality found the following local rigidity theorem in the early sixties [29, 183, 184]. Here we call
a discrete subgroupΓ of a groupG cocompactif G/Γ is compact.

LOCAL RIGIDITY THEOREMCocompact discrete subgroups Γ in semisimple Lie groups without
compact nor SL(2,R) nor SL(2,C) local factors is deformation rigid.

These results left open the possibility of embedding the same abstract group as a cocompact
lattice in more than one way. To get a global theorem, G. D. Mostow in 1968 invented a completely
new scheme of proof, using ideas and tools from topology, differential and conformal geometry,
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group theory, ergodic theory and harmonic analysis. Mostow’s theorem can be stated entirely both
in geometric and group theoretic terms, which are easily seen to be equivalent [150].

STRONG RIGIDITY - GEOMETRIC FORM If two closed manifolds of constant negative curvature
and dimension at least 3 have isomorphic fundamental group, then they are isometric.

STRONG RIGIDITY - ALGEBRAIC FORM Let Γ be a cocompact discrete subgroup of PSO(1,n),
n≥ 3. Suppose φ : Γ → PSO(1,n) is a homomorphism whose image is again a cocompact discrete
subgroup of PSO(1,n). Then φ extends to an automorphism from PSO(1,n).

A crucial tool in Mostow’s analysis are quasi-isometries. Given two metric spacesX andY, we
call a mapφ : X 7→Y aquasi-isometryif there are positive constantsA andB such that for allp,q∈X

Ad(x,y)−B < d(φx,φy) < Ad(x,y)+B.

The proof of Mostow’s theorem is roughly accomplished in the following steps.
Step 1: The fundamental groupΓ acts on the universal covers ofM andN by deck translations.

There is aΓ-equivariant quasi-isometryφ between the universal covers̃M andÑ. Essentially this
quasi-isometry just moves theγ-translate of a fundamental domain of theΓ-action onM̃ to theγ-
translate of a fundamental domain ofΓ on Ñ whereγ ∈ Γ.

Step 2: φ extends to a homeomorphismψ of the boundariesSn−1 of M̃ and Ñ. This uses a
fundamental property of spaces of negative curvature going back to M. Morse: quasi-geodesics i.e.
quasi-isometric maps ofR into such a space are a bounded distance from a geodesic.

Step 3: ψ is Γ-equivariant and quasi-conformal as follows from negative curvature andφ being a
quasi-isometry.

Step 4: ψ is conformal. This follows from ergodicity of theΓ-action on the boundary and the
invariance underΓ of the distortion ofψ.

Step 5: ψ extends to aΓ-equivariant isometry of̃M andÑ.
In essence, Mostow showed thatΓ-equivariant quasi-isometries are a finite distance from an isom-

etry.
Surfaces: Both strong and local rigidity fail in dimension 2 as compact surfaces of genusg at

least 2 have a 6g− 6-dimensional moduli space of metrics of constant curvature -1. This is most
easily seen by the pair of pants construction [180].

Symmetric Spaces: Locally symmetric spaces are a special class of Riemannian manifolds char-
acterized by the vanishing of the covariant derivative of the curvature tensor. Equivalently, the
geodesic symmetries about every point are isometries (locally). They can all be described as double
cosets of suitable Lie groups, e.g.SO(2)\SL(2,R)/Γ or SO(n)\SL(n,R)/Γ, Γ a discrete subgroup.
Mostow generalized his Strong Rigidity Theorem in 1974 to arbitrary compact locally symmetric
spaces of of nonpositive curvature that do not split off one or two-dimensional factors metrically
[151].

Finite volume: Call a discrete subgroupΓ of a Lie groupG a lattice if G/Γ has finite Haar
measure. G. Prasad generalized Mostow’s arguments for the Strong Rigidity Theorem in 1973 by
analyzing the manifold with the cusps cut off [164].
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STRONG RIGIDITY IN FINITE VOLUME Strong rigidity holds for finite volume locally symmetric

spaces of negative curvature or equivalently for lattices in the corresponding isometry groups.

SUPERRIGIDITY

Mostow’s Strong Rigidity Theorem shows that a homomorphism from a latticeΓ into the ambient
Lie groupG extends to a homomorphism ofG provided that the image ofΓ is also a lattice. In a
spectacular breakthrough in 1973, G. A. Margulis classified all finite dimensional representations of
irreducible lattices in higher rank groups [141, 142, 143]. These are semisimple groupsG which
contain a 2-dimensional abelian subgroup diagonalizable overR. A typical example isSL(n,R),n≥
3. A lattice is caledirreducible if no finite index subgroup is a product.

SUPERRIGIDITY Let Γ be an irreducible lattice in a connected semisimple Lie group G of R-
rank at least 2, trivial center, and without compact factors. Suppose k is a local field. Then any
homomorphism π of Γ into a noncompact k-simple group over k with Zariski dense image either has
precompact image or π extends to a homomorphism of the ambient groups.

Margulis’ motivation and first major application was the arithmeticity of lattices in higher rank
semisimple groups. Here we call a groupΓ in a linear groupG arithmeticif (up to subgroups of finite
index) it is the integer points of an algebraic group defined overQ. A typical example isSL(n,Z) in
SL(n,R).

ARITHMETICITY Irreducible lattices in connected higher rank semisimple Lie groups are arith-
metic.

In subsequent work, Margulis showed that homomorphisms of higher rank lattices into compact
groups essentially come from the restriction of scalars construction for arithmetic groups [143]. This
completes our understanding of the finite dimensional representations of these groups.

The proof of the superrigidity theorem was inspired in part by Mostow’s work. In the first
step, Margulis finds a measurableΓ-equivariant map between suitable Furstenberg boundaries of
the groups. This first step is similar to Mostow’s except that the resulting map is only measurable.
Also, the maps do not go between spheres at infinity of the associated symmetric spaces but rather
between suitable Furstenberg boundariesG/P, P a parabolic subgroup ofG. These boundaries
however correspond to subsets of the geometric sphere at infinity. Margulis used the multiplicative
ergodic theorem to construct this map. Later, R. Zimmer found an alternative construction using the
fact thatΓ acts amenably on a minimal boundary ofG. This first step does not require higher rank.
In the second step, Margulis shows regularity of the map between the boundaries using strongly that
the real rank is at least 2.

Harmonic maps method: There is now an alternative proof of superrigidity that also works
for Sp(n,1) andF4

−20, the isometry groups of quaternionic hyperbolic space and the Cayley plane
respectively. Eells and Sampson showed in the 1960’s that each homotopy class between compact
nonpositively curved spaces contains a unique harmonic map [52]. Sometimes properties of the
curvature tensor of the domain force the harmonic map to be an isometry. Examples of such results
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are due to Y. T. Siu in 1980 in K̈ahler geometry [176] and K. Corlette for quaternionic hyperbolic
spaces in 1990 [36]:

THEOREM: Strong rigidity holds for compact Kähler manifolds of “strongly negative curvature”.

THEOREM: (Archimedean) superrigidity holds for cocompact lattices in Sp(n,1).

In 1992, Gromov and Schoen extended Corlette’s argument to groups over local fields by gener-
alizing the notion of harmonic map to non-manifold targets.

THEOREM: Cocompact lattices in Sp(n,1) are arithmetic.

Finally, Mok-Siu-Yeung, Jost-Yau and Jost-Zuo extended the harmonic maps approach to su-
perrigidity to higher rank groups and quasiprojective varieties in the early 1990’s [147, 116, 115].

Non-arithmeticity : There are few constructions of non-arithmetic lattices for the remaining rank
one semisimple Lie groups except for surfaces where non-arithmetic lattices are abundant as there
are only countably many arithmetic groups and a 6g−6-dimensional moduli space. Makarov and
Vinberg managed special constructions with reflection groups for other low-dimensional real hy-
perbolic spaces. On the other hand, Vinberg proved non-existence of cocompact reflection groups
in dimensions larger than 30 [182]. In arbitrary dimension, one can sometimes combine different
arithmetic pieces with isometric totally geodesic boundaries. Gromov and I. Piatetski-Shapiro used
this idea in 1988 [92]:

THEOREM: There exist non-arithmetic lattices for real hyperbolic spaces of all dimensions.

In complex hyperbolic space, the only known non-arithmetic examples were constructed first
by Mostow in 1980 and later by P. Deligne and Mostow in 1986 in complex dimensions 2 and 3
[153, 46, 47]. They arise either as complex reflection groups or as

THEOREM: There exist non-arithmetic lattices in PU(2,1) and PU(3,1).

Naturally the question arises for criteria which ensure arithmeticity of lattices inPU(2,1). Some
progress on this problem has been made by B. Klingler [133]. In particular he proves that every
fake P2C is arithmetic. Superrigidity and existence of non-arithmetic lattices in high dimensional
complex hyperbolic spaces remain outstanding problems. Y. Shalom used representation theoretic
tools to prove some restrictions on homomorphisms of lattices in the non-rigid rank 1 groups [174]
and irreducible subgroups of products of groups [175]. The latter extends results on trees by Burger
and Mozes [26, 27].

The results above indicate increasing rigidity as one goes from amenable groups to free groups
andSl(2,R), thenSO(n,1), SU(n,1), Sp(n,1) and finally higher rank semisimple groups.
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GEOMETRY AND TOPOLOGY

The rigidity results we have encountered so far concerned the very special class of locally sym-
metric spaces. Clearly, one cannot hope for a Mostow type rigidity theorem in variable negative
curvature as one can simply perturb a metric of constant negative curvature. However, several inter-
esting questions arise.

• Are there structures weaker than the metric structure which are rigid?
• Characterize locally symmetric spaces within a wider class of spaces.
• Find additional invariants that determine the metric structure.

Differential topology

Most fundamentally, one can ask if the the topological structure of a manifold of nonpositive
curvature is determined by the fundamental group. This was resolved in a remarkable series of
papers in the 80’s and 90’s by T. Farrell and L. Jones [60]. It is a special case of Borel ’s conjecture
which makes the same assertion for any compact aspherical manifold.

TOPOLOGICAL RIGIDITY THEOREM Two nonpositively curved compact manifolds of dimen-
sion at least 5 with isomorphic fundamental group are always homeomorphic but not necessarily
diffeomorphic.

Farrell and Jones explicitly constructed examples of homeomorphic compact manifolds with met-
rics of negative sectional curvature which are not diffeomorphic. They accomplished this for both
real and complex hyperbolic spaces. The idea is to glue in exotic spheres while maintaining negativ-
ity of the curvature. Interestingly, it is not clear if such constructions can be done for the remaining
rank one symmetric spaces. Such examples are not possible for irreducible higher rank symmetric
spaces as follows from the rank rigidity theorem below.

Characterizing symmetric spaces

Symmetric spaces are very special Riemannian manifolds that are at the crossroads of geometry
and Lie theory. They are defined via the stringent requirements that either the curvature tensor is
parallel or that all local geodesic symmetries are isometries. In particular the isometry groups of the
universal cover are highly transitive. Naturally one hopes for characterizations of these spaces using
milder properties.

Remarkably, symmetric spacesX contain lots of totally geodesic two-dimensional subspaces of
constant curvature equal to the maximal curvature ofX. We will see in this section that one can
indeed characterize them in terms of these extremal curvature properties. The first instance of this
phenomenon was for nonpositive curvature where every geodesic is contained in a totally geodesic
flat surface. It was partially motivated by the higher rank rigidity phenomena described above.

Euclidean Rank: A Riemannian manifold hashigher (Euclidean) rankif for every geodesic
there is a parallel Jacobi field perpendicular to the geodesic. This condition is satisfied in particular
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if every geodesic is contained in a 2-dimensional totally geodesic flat subspace, and one should think
of it as the infinitesimal analogue of the latter. Basic examples are products or locally symmetric
spaces of higher rank.

In 1983 in [7, 8] W. Ballmann, M. Brin, P. Eberlein and the author laid the ground for the rank
rigidity theorem proved later by Ballmann [4, 5, 10] and independently K. Burns and the author [28].

RANK RIGIDITY THEOREMCompact irreducible manifolds of higher rank are locally symmetric.

There are a number of natural extensions of this result. In particular, J. Heber found a similar
result for homogeneous spaces of non-positive curvature [106]. S. Adams and L. Hernandez proved
such results for leaves of foliations of compact manifolds if these leaves are endowed with non-
positively curved metrics [1]. Eberlein and Heber relax the compactness condition in the theorem
above, replacing it with a milder recurrence assumption [49, 51]. To date, no example of a complete
manifold of non-positive curvature of higher rank is known which is not a product or a locally
symmetric space. There are also some results for singular spaces of higher rank, namely three-
dimensional Euclidean polyhedra [6]. B. Leeb gave a characterization of symmetric spaces and
Euclidean buildings in terms of the Tits geometry at infinity [135], Kleiner (unpublished) and R.
Charney and A. Lytchak in terms of the local geometry [30].

Ballmann and Eberlein also showed that the rank of a nonpositively curved metric is an invariant
of the fundamental group [9]. In particular, we immediately get a rigidity result of Gromov [10] and
Eberlein ( in the case of local products) [49].

COROLLARY Nonpositively curved metrics on irreducible locally symmetric space of higher rank
are unique up to scaling.

Hyperbolic rank : In 1991, U. Hamenstädt coined the notion of hyperbolic rank of a Riemannian
manifoldM in analogy with Euclidean rank:M hashigher hyperbolic rankif its curvature is bounded
above by -1, and for every geodesicc there is a Jacobi field which makes sectional curvature -1 with
c [99]. Note that this is actually a slightly weaker condition than in the Euclidean case. Hamenstädt
also established rigidity.

Hyperbolic Rank Rigidity TheoremIf a closed manifold M has higher hyperbolic rank, then M is
locally symmetric.

Surprisingly, the analogue of this theorem fails for homogeneous manifolds of negative curvature
as was found by C. Connell. He also found a slight additional assumption under which the statement
holds [32].

Connell recently weakened the geometric assumption on Jacobi fields in Hamenstädt’s theorem
to the dynamical condition that there is a set of positive measure of tangent vectors for which some
Lyapunov exponent is exactly -1 [33]. He used this to characterize symmetric spaces in terms of the
quasi-conformal structure and Hausdorff dimension of the boundary of the universal cover: LetM
be a compact manifold, and∂M̃ the sphere at infinity of the universal cover ofM. Then∂M̃ carries
a natural bi-Lipschitz class of metrics, and∂M̃ has a natural Hausdorff dimension.
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THEOREM Suppose ∂M̃ has the same Hausdorff dimension as some boundary ∂Sof a negatively
curved symmetric space S. If ∂M̃ is quasi-conformally homeomorphic to ∂S, then M is locally
symmetric.

Using totally different methods, M. Bonk and B. Kleiner proved the following related result in
2002 [22].

THEOREM Consider a properly discontinuous, quasi-convex cocompact and isometric action of a
group Γ on a CAT(-1)-space X. If the Hausdorff and topological dimensions of the limit set agree,
and are equal to n≥ 2, then X contains real hyperbolic n-space as a convex Γ-invariant subset.

They have other such characterizations, e.g. in terms of actions on Ahlforsn-regular spaces of
topological dimensionn [22, 23, 24].

Spherical rank: Finally let us consider complete Riemannian manifoldsM with upper sectional
curvature bound 1. The natural analogue to Euclidean and hyperbolic rank is the existence of a
Jacobi field of the form sin(t)E along every geodesic whereE is a parallel field. Using Rauch’s
comparison theorem, it is not hard to see that this condition is equivalent to the following:M has
positive spherical rankif the conjugate radius ofM is π. Recall that the conjugate radius is always
at leastπ by Rauch’s comparison theorem.

Using Morse theoretic methods, K. Shankar, B. Wilking and the author recently found the fol-
lowing characterization.

SPHERICAL RANK RIGIDITY THEOREM Let Mn be a complete, simply connected Riemannian
manifold with sectional curvature at most 1 and positive spherical rank. Then M is isometric to a
compact, rank one symmetric space i.e., M is isometric to Sn, CP

n
2 , HP

n
4 or CaP2.

Minimizing curvature : Let us mention that the analogous situation with lower curvature bounds
and extremal Jacobi fields is not understood except for nonnegatively curved manifolds. For these,
Heintze found homogeneous spaces for which every geodesic is contained in a totally geodesic flat
subspace [107]. Later Strake and the author found many such metrics, and in particular ones for
which the manifold may not even be homotopy equivalent to a homogeneous space [177].

Pinching Rigidity : The earliest rigidity theorem for positively curved manifolds is the sphere
theorem of M. Berger and W. Klingenberg: Call a manifold 1/4-pinchedif all sectional curvatures
lie between 1 and 4 or -1 and -4. If the inequalities are strict, call the manifoldstrictly 1/4-pinched.
Klingenberg proved that a complete strictly 1/4-pinched simply connected manifold is homeomor-
phic to a sphere. Berger extended this theorem to 1/4-pinched manifolds: either the underlying
manifold is a sphere or the manifold is isometric to a rank one symmetric space.

There are analagous questions in negative curvature. The topology of complete simply connected
manifolds of nonpositive curvature is trivial by Hadamard’s theorem as they are always diffeomor-
phic to Euclidean space. In particular, these areK(π,1)-spaces and the algebraic topology is de-
termined by the fundamental group. What fundamental grops are possible, and if there are further
restrictions under pinching assumptions is unclear. For example, strict 1/4-pinching may prevent
Kazhdan groups as fundamental groups. Also, it is natural to ask when a 1/4-pinched space carries
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a locally symmetric structure. Gromov and Thurston found a construction of many new spaces of
negative curvature in 1987 [93]. They used branched covers of totally geodesic submanifolds of a
constant curvature space. This is reminiscent of the first example of a negatively curved Kähler man-
ifold that does not admit a locally symmetric metric by Mostow and Siu [154]. This latter example
was obtained via a very special construction involving complex reflection groups.

THEOREM There are many 1/4-pinched Riemannian manifolds of negative curvature which do

not carry a locally symmetric metric.

Amazingly locally symmetric metrics of negative but not constant curvature exhibit strong rigid-
ity properties as was shown with the harmonic maps approach by Hernandez, Yau and Zheng and
Gromov [108, 187, 90].

1/4-PINCHING RIGIDITY THEOREM Any 1/4-pinched metric on a compact complex or quater-
nionic hyperbolic space is locally symmetric.

Katok asked for a dynamical analogue replacing the1
4 pinching assumption on the curvature

by a 1
2-pinching assumption on the Lyapunov exponents. J. Boland found counterexamples to the

most optimistic statement that1
2-pinched contact perturbations of the geodesic flow of a compact

complex or quaternionic hyperbolic are smoothly conjugate to this geodesic [21]. However, his
counterexamples are certain smooth time changes of the geodesic flow with smooth stable foliations
and as such are classified by Benoist, Foulon and Labourie [16]. This leaves open the possibility of
dynamical rigidity in this context.

Minimal Volume and Entropy : A common theme in Riemannian geometry is the analysis of
metrics extremal or critical for some functional. Einstein metrics for example are critical points for
the total scalar curvature. Given a differentiable manifoldM, one can try and minimize the volume
over all metrics with sectional curvature bounded by -1 and 1. This may or may not be possible. The
infimum of such volumes is called theminimal volumeof M, a notion coined by Gromov [88]. J.
Cheeger, K. Fukaya and Gromov analyzed when the minimal volume is 0 in terms of flat and more
generally nilpotent structures [31]. In general, one can ask when there is a metric with minimal
volume. Compact surfaces of constant negative curvature have minimal volume by Gauss-Bonnet.
Little is known in higher dimension except for the following breakthrough by G. Besson, G. Courtois
and S. Gallot in 1995 [19, 78].

THEOREM Let M be a closed manifold of dimension at least 3 which admits a metric g0 of
constant sectional curvature -1. Then g0 is the unique metric with minimal volume.

Conjecturally, all (suitably normalized) locally symmetric manifolds of nonpositive curvature
minimize the volume. Note however that compact manifolds with a metric of negative curvature
need not carry a metric of minimal volume. For example, one can change the differentiable structure
on a closed manifoldM of constant negative curvature by taking connected sums with an exotic
sphere. L. Bessières showed that the resulting closed manifold does not admit a metric with minimal
volume [17]. His results generalize to closed manifolds which map intoM with nonzero degree.
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Bessìeres’ work also implies that the minimal volume is only a differential and not a topological
invariant.

Besson, Courtois and Gallot actually proved their result on minimal volume via their celebrated
work on minimal entropy which we will now discuss. A natural geometric invariant closely linked
to dynamics is thevolume growth entropy h. It is the exponential growth rate of the volume of balls
in the universal cover:

h = lim
r→∞

1
r

logvolBr(p)

wherep∈ M̃ is some point in the universal cover̃M of M. The volume growth entropy always is a
lower bound for the topological entropy of the geodesic flow, and equals it if the metric does not have
conjugate points [140, 71]. Now define theminimal entropyof a compact manifold as the infimum
of the volume growth entropies of all metrics with volume 1. Remarkably, the minimal entropy is
a homotopy invariant as was shown by I. Babenko [3]. Just like the minimal volume, the minimal
entropy is often 0, for example for manifolds with nontrivial flat structures, as was shown by G.
Paternain and J. Petean [162]. They also analyze in detail which 4- and 5-manifolds have minimal
entropy 0.

A topological invariant closely related to the minimal volume is Gromov’ssimplicial volume
[88]. Given a compact manifoldM, it is the infimum of∑i ‖r i‖ where∑i r iσi is a singular chain
representing the fundamental class. The simplicial volume of a closed negatively curved manifold
is never 0. Gromov used this invariant to give a completely new proof of Mostow’s rigidity theorem
for constant curvature manifolds [91, 180]. Minimal volume, minimal entropy and also the also
simplical volume‖M ‖ of Gromov are closely related by the following inequalities [88, 18].

MinVol(M)≥ 1
(n−1)n MinEnt(M)≥ nn/2

(n−1)n ·n!
‖M ‖ .

Metrics which minimize the volume growth entropy are of particular interest. Natural candidates
are the locally symmetric metrics of nonpositive curvature, as was conjectured by A. Katok and M.
Gromov. The case of negative curvature is now fairly well understood due to Besson, Courtois, and
Gallot’s groundbreaking work in the early 90’s [19].

M INIMAL ENTROPY RIGIDITY On a compact locally symmetric space M of negative curvature,
precisely the symmetric metrics minimize the volume growth entropy (amongst metrics with fixed
volume).

As before, this result generalizes to mapsf : N 7→ M of nonzero degree intoM [19]. Let us
describe the barycenter method, the main idea of the proof, in the simplest case when both metrics
are negatively curved. First liftf to the universal covers̃N and M̃ and extend this lift to a map
φ between the spheres at infinity ofN andM. Eachx ∈ Ñ determines special measuresµx on the
sphere at infinity called thePatterson-Sullivan measures. Roughly they measure how the orbit of
x under the fundamental group equidistributes at infinity. Thenφ∗(µx) is a probability measure on
the sphere at infinity ofM. One can show thatφ∗(µx) does not have atoms. In this case, one can
define the barycenter ofφ∗(µx), and get a mapF : Ñ 7→ M̃ given byx 7→ barycenterφ∗(µx). ThenF
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is differentiable and amazingly, one can estimate the Jacobian ofF . This allows one to compare the
volume growth entropy ofN andM.

The case of nonpositively curved closed locally symmetric spacesM without Euclidean factors is
open. C. Connell and B. Farb generalized the barycenter method to this case. However, this approach
does not lead to the optimal constants needed to prove that the minimal volume of all closed locally
symmetric spaces is achieved by the locally symmetric metric [34, 35]. It does show however that
the minimal volume of such spaces is positive, and bounds the degree of maps intoM in terms of
the ratio of the volumes. The stronger property that the simplical volume of these spaces is nonzero
remains open at this time except for certain special cases [171].

The barycenter method of Besson, Courtois and Gallot has been applied and extended to numer-
ous settings, from 3-manifold topology to Hamiltonian systems and Einstein manifolds. We refer to
[20, 78, 35, 161] for more extensive surveys.

More on Entropy : There are other flavors of entropy besides the volume growth and topological
entropy: given any invariant measureµ for the geodesic flow, we can consider the measure-theoretic
entropyhµ of µ. Entropy essentially is a measure of the speed of mixing of the system [104]. If
the manifoldM has negative curvature, the most interesting measures are geometrically defined: the
Liouville measureλ, the harmonic measureν and the Bowen-Margulis measureµ. The Liouville
measure is the volume determined by the canonical invariant contact structure on the unit tangent
bundle ofM. The harmonic measure corresponds to the hitting probability of the Brownian motion
on the sphere at infinity of the universal cover ofM. Finally, the Bowen-Margulis measure is just
the unique measure of maximal entropy. By the maximum principle, its entropy is equal to the
topological entropy, and majorizes all other measure-theoretic entropies. For closed surfaces of
genus at least 2, A. Katok showed thath = hµ > hλ unless the curvature is constant [123]. IfM is
a closed locally symmetric space of negative curvature, then all three measures and their entropies
are equal. This lead to the following conjecture due to Katok, D. Sullivan and V. Kaimanovich
[123, 178, 118]:

ENTROPY CONJECTURELet M be a closed manifold of negative curvature. If at least two of λ,ν
or µ are equal, then M is locally symmetric.

This conjecture has been established for deformations of constant curvature metrics by L. Flaminio
using representation theory [68]. He also showed thathλ does not achieve a maximum at the con-
stant curvature metric, unlike in the 2-dimensional case [123]. Furthermore, Katok, Knieper and
Weiss showed that the negatively curved locally symmetric metrics are always critical points for
both topological and Liouville entropy [125].

Regularity of the Anosov splitting: For any Anosov diffeomorphism or flow, the stable and
unstable distributions are always Hölder, and in general not better than that [105, 166, 79]. For closed
surfaces or strictly14-pinched closed manifolds of negative curvature, the geodesic flow always has
C1 stable and unstable distributions [109, 102, 103]. Stronger regularity is expected to force rigidity.
In dimension 3, S. Hurder and Katok and later Ghys obtained the following rigidity result with
almost optimal regularity [82, 114, 113]. This is based on Ghys’ work in theC∞-case [80].
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THEOREM Suppose an Anosov flow φt on a closed three-dimensional manifold has C1+Lipschitz

stable and weak unstable distributions, then φt is a time change of an algebraic Anosov flow. More-
over, if φt is a geodesic flow then the curvature of the underlying surface is constant

In higher dimension, the best known result is due to Y. Benoist, P. Foulon and F. Labourie [16].
This followed earlier work of Kanai and later Katok and R. Feres who classified such systems under
pinching or dimension assumptions. Kanai introduced a natural connection invariant under the flow,
now called the Kanai connection, which proved crucial for all these developments.

THEOREM Let φt be a contact Anosov flow on a closed manifold M with C∞-stable and unstable

foliation. Then φt is C∞-conjugate to either a suspension of an algebraic Anosov diffeomorphism or a

time change of a geodesic flow of a locally symmetric space.

The time changes in question are of a very special nature, given in terms of suitable 1-forms.
Benoist and Labourie later proved the analogous result for symplectic or connection preserving
diffeomorphisms [12]. For geodesic flows, one can combine Benoist, Foulon and Labourie’s theorem
with the work of Besson, Courtois and Gallot [19].

THEOREM If the geodesic flow of a closed manifold M of negative curvature has smooth stable

distribution, then M is locally symmetric.

V. Sadovskaya recently applied the work of Benoist, Foulon and Labourie to classify uniformly
quasi-conformal contact Anosov flows [170] with stable distribution of dimension at least 3. Up
to smooth conjugacy, they are time changes of the geodesic flow of a constant curvature manifold.
This generalized earlier results by Sullivan and C. Yue for geodesic flows and R. de la Llave for
conformal flows [178, 188, 45]. She obtained similar results for diffeomorphisms with B. Kalinin
[120]. The key idea in these works is to prove that the stable foliation is smooth by analysing the
holonomy along the transverse foliation. The holonomy is conformal, and hence defines aC∞-map
on stable leaves by Liouville’s theorem on conformal maps onRl .

Harmonic manifolds: Call a manifoldharmonicif the distance spheres of the universal cover
have constant mean curvature. Foulon and Labourie combined minimal entropy rigidity with their
previous joint work with Benoist in 1992 to prove the following special case of the Lichnerowicz’
conjecture [69].

THEOREMIf a closed manifold M of negative curvature is harmonic, then M is locally symmetric.

They first show that the horospheres have constant mean curvature. In turn this forces regularity
of the Anosov splitting. Compactness of the manifold proves crucial here due to the examples of
Damek and Ricci from 1992 [44].

THEOREM There are non-harmonic negatively curved homogeneous manifolds.

Harmonic solvmanifolds of negative curvature have not yet been classified. Some partial progress
in this direction was recently obtained by Benson, Payne and Ratcliff for three-step solvmanifolds
[11].
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Spectral Rigidity: Kac’ famous problem whether the spectrum of the Laplacian of a Riemannian
manifold determines the metric has stirred up a storm of counterexamples, even for closed manifolds
with constant negative curvature [181, 179]. There are now plenty of isospectral manifolds with dif-
ferent topology, different local Riemannian structures and deformations [85]. In negative curvature
however, Guillemin and Kazhdan for surfaces and very pinched metrics, and later Croke and Shara-
futdinov in general showed [95, 94, 41]:

ISOSPECTRALDEFORMATION RIGIDITY If gt is a path of negatively curved metrics with the
same spectrum of the Laplacian on a compact manifold, then the gt are all isometric.

It is crucial here that the manifolds do not have boundary. Gordon and Szabo recently constructed
examples of negatively curved manifolds with boundary which admit isospectral deformations [86].
An important dynamical ingredient in the proof is Livsic’ theorem that a function is a Lie derivative
of an Anosov flow if all averages over closed orbits vanish.

The spectrum of the Laplacian is closely related to the length of the closed geodesics in the
manifold via the trace formula [48]. In negative curvature moreover, each free homotopy class of
loops contains a unique closed geodesic. Thus one can define themarked length spectrumas this
length function on the fundamental group. Remarkably, both C. Croke and J.-P. Otal showed that
this function sometimes determines the manifold [38, 158].

THEOREM The marked length spectrum determines a non-positively curved compact surface up
to isometry.

In higher dimension, much less is known. If two negatively curved closed manifoldsM andN
have the same marked length spectrum, then their geodesic flows areC0-conjugate [98]. Hence the
topological and thus volume growth entropies coincide. IfM also hasC1-Anosov splitting as in
the case of locally symmetric spaces, Hamenstädt proves in [100] that the volumes are also equal.
Combining this with Besson, Courtois and Gallot’s work on volume growth entropy, we get

THEOREM A negatively curved closed manifold with the same marked length spectrum as a
negatively curved closed locally symmetric space M is isometric to M.

Croke, Eberlein and Kleiner generalized this result to nonpositively curved symmetric spaces
whose geodesic flows are conjugate to that of another manifold of nonpositive curvature [39]. For
arbitrary curvature, homotopic closed geodesics may have different lengths,and one may just want
to consider the minimal or maximal lengths. Eberlein and recently Gornet and Mast have results
for 2-step nilmanifolds [50, 87]. Alternately, consider manifoldsM andN whose geodesic flows are
conjugate, and therefore have the same marked length spectra. Amazingly, ifN say admits a parallel
vector field, then Croke and Kleiner showed thatM andN are isometric [40].

QUASI-ISOMETRIES AND GROUP THEORY

Quasi-isometries played a crucial role in Mostow’s proof of his Strong Rigidity Theorem. He
considered a symmetric spaceX of non-positive curvature which does not have Euclidean or hyper-
bolic plane factors. Then a quasi-isometry ofX equivariant for the action of a lattice has to be a
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bounded distance from an isometry. For the real and complex hyperbolic spases, the equivariance
condition is needed: one can simply extend a diffeomorphism or contact diffeomorphismf respec-
tively from the sphere at infinity to a quasi-isometryf̃ of the interior by f̃ (r,θ) = (r, f (θ)) in terms
of suitable polar coordinates [91]. In higher rank however, Margulis conjectured in the 1970’s that
the equivariance assumption is not needed. Actually, this was first shown by P. Pansu for the (rank
one !) quaternionic hyperbolic spaces and the Cayley hyperbolic plane [159]. Then first B. Kleiner
and B. Leeb, and independently A. Eskin and B. Farb affirmed the Margulis conjecture in the mid
1990’s [132, 56]:

CLASSIFICATION OF QUASI-ISOMETRIESAny quasi-isometry of an irredicible higher rank sym-
metric space or quaternionic hyperbolic space or the Cayley hyperbolic plane is a finite distance
from an isometry.

Kleiner and Leeb argue via ultralimits: rescale the locally symmetric metric byε 7→ 0. Then the
symmetric space converges to a Euclidean building, at least with respect an ultrafilter - a technical
device to insure convergence. The quasi-isometry limits to a bi-Lipschitz map. Kleiner and Leeb
then classify the homeomorphisms of an irreducible building as essentially isometries. Translating
this back to the approximating symmetric space shows that the quasi-isometry is a finite distance
from an isometry.

Inspired by the Morse Lemma in negative curvature, Eskin and Farb study quasi-isometric maps
of Rk into a symmetric space or real rankk. Unlike in negative curvature, such a map is not in
general a bounded distance from a flat. Rather one needs finitely many Weyl chambers in flats to get
within a bounded distance of a quasi-isometry.

This classification of quasi-isometries of symmetric spaces has important consequences in geo-
metric group theory. The idea is to make a finitely generated groupΓ into a geometric object endow-
ing it with a word metric. Given a finite generating setS, the distance between two group elements
γ1,γa2∈Γ is simply the length of the shortest word forγ−1

2 γ1 in S. The word metrics for two different
finite generating sets are quasi-isometric. Thus the “geometry in the large” ofΓ is well determined.
A fundamental problem, posed by Gromov, is the classification of quasi-isometry classes of groups.
This program has proved enormously successful in the case of lattices in Lie groups where we have
gained an almost complete understanding over the last decade. Combining works of Casson, Chow,
Drutu, Eskin, Farb, Gabai, Gromov, Jungreis, Kleiner, Leeb, Pansu, Schwartz, Sullivan and Tukia
one gets two main results, quasi-isometric rigidity and classification.

QUASI-ISOMETRIC RIGIDITY OF LATTICES If a finitely generated group Γ is quasi-isometric to

an irreducible lattice in a semisimple Lie group G, then there is a finite subgroup F ⊂ Γ such that

Γ/F is isomorphic to a lattice in G.

Call two latticescommensurableif they contain isomorphic subgroups of finite index.

QUASI-ISOMETRIC CLASSIFICATION OF LATTICES There is one quasi-isometry class of co-

compact lattices for each semisimple group G. Further, there is one quasi-isometry class for each

commensurability class of irreducible non-cocompact lattices, except for G= SL(2,R) where there is

precisely one quasi-isometry class of non-cocompact lattices.
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Gromov’s program has also been investigated for groups acting on trees, and in particular for
Baumslag-Solitar groups [58, 149, 185]. We refer to [57] for a much more detailed survey.

Gromov also introduced a measure theoretic analogue of quasi-isometry. Call two groupsΓ and
Λ measure equivalentif they admit commuting actions on a Borel spaceΩ by measure preserving
transformations such that both groups have finite measure fundamental domains. A. Furman studied
the case of a countable groupΛ measure equivalent to a latticeΓ in a higher rank noncompact
simple Lie group [72]. He showed that thenΛ itself is essentially a lattice in a higher rank simple
Lie group. The proof crucially uses Zimmer’s superrigidity for cocycles. Furman applied this to
orbit equivalences of actions of such groups [73]. Very recently, D. Gaboriau showed thatl2-Betti
numbers of groups are essentially invariant under measure equivalence [76]. This allowed him in
particular to distinguish free groups and their products under measure equivalence (cf. also [77]).
Recently, N. Monod and Y. Shalom used techniques from bounded cohomology to prove measure
equivalence rigidity of products of groups acting on CAT(−1)-spaces [148].

DYNAMICS AND GROUP ACTIONS

Dynamics and ergodic theory furnished important tools for rigidity theory, and in particular for
Mostow’s and Margulis’ theorems. In turn, ideas and tools from rigidity theory proved important in
dynamics. We will mostly discuss two developments here, namely the Zimmer program on actions
of large groups and the recent work on hyperbolic actions of higher rank abelian groups. We refer
to other surveys for other important developments and in particular for Ratner’s work on measure
rigidity of unipotent actions and applications, e.g. [167, 81, 144, 145, 146, 131] and hyperbolic
dynamical systems [101].

Anosov actions

The recent work on Anosov actions of higher rank abelian groups drew its inspiration from several
sources: the Zimmer program studying actions of semisimple groups and their lattices, Furstenberg’s
conjecture on scarcity of measures jointly invariant for×2 and×3, Ratner’s work on unipotent flows
and measures, and finally the higher rank rigidity results for Riemannian manifolds. In fact, the
geometry of negatively and nonpositively curved manifolds has always been tied closely to dynamics
via the geodesic flow. Negativity of the curvature naturally corresponds to hyperbolicity for the flow.
Thus the geometric rigidity results suggest rigidity for actions of higher rank abelian groups (the
analogues of flats) with transverse hyperbolic behaviour.

Suppose a groupA actsC∞ and locally freely on a manifoldM with a Riemannian norm‖‖. Call
the actionAnosovif there is an an elementg∈ A and there exist real numbersλ > µ > 0, C,C′ > 0
and a continuous splitting of the tangent bundle

TM = E+
g +E0 +E−

g

such thatE0 is the tangent distribution of theA-orbits and for allp∈M, for all v∈E+
g (p) (v∈E−

g (p)
respectively) andn > 0 (n < 0 respectively) we have for the differentialg∗ : TM→ TM

‖ gn
∗(v) ‖≤Ce−λ|n| ‖ v ‖ .
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Anosov actions ofZ andR are called Anosov diffeomorphisms and flows.

Structural stability, cocycles and local rigidity: The first rigidity result goes back to D. Anosov
in the 1960’s who proved for Anosov diffeomorphisms and flows that the orbit structure is rigid
under small perturbations [2]. M. Hirsch. C. Pugh and M. Shub generalized this to [110]:

STRUCTURAL STABILITY [Anosov, Hirsch-Pugh-Shub]]Any C1-small perturbation of an Anosov

action is orbit equivalent to the original action, i.e. there is a homeomorphism taken orbits to orbits.

This theorem often serves as a starting point to prove other stronger rigidity results in that one
can try to improve upon the orbit equivalence coming from structural stability. In the best possible
cases one wants to improve the orbit equivalence to an isomorphism, ideally of higher regularity.
Straightening an orbit equivalence to an isomorphism can be thought of as a cohomology problem.
Let us first recall the notion of cocycle. Suppose a groupG acts on a spaceX. We callα : G×X 7→H
into a groupH acocycleif

α(g1g2,x) = α(g1,g2x)α(g2,x).

Given a mapβ : X 7→ H, we call the cocycleα′(g,x) = β(gx)−1 α(g,x)β(x) cohomologousto α. If
α ∼= 1, thenα′ is called acoboundaryof β. We call the cohomology or coboundary measurable,
continuous or smooth depending on the regularity ofβ.

If φ is an orbit equivalence between actions ofG andH and theH-action is free, then the equation

φ(gx) = α(g,x)φ(x)

determines a cocycle. Changing an orbit equivalence along the orbits gives cohomologous cocycles.
The problem of straightening an orbit equivalence into an isomorphism is equivalent to showing that
the associated cocycle is cohomologous to a constant cocycleβ(γ,x) ∼= β(γ), i.e. a homomorphism
β : G 7→ H.

In the case of Anosov actions, two early theorems of Livsic [138] from 1972 play an important
role. For Anosov flows they give criteria when a Hölder orC∞ function f is a Lie derivative along the
flow, namely either if all integrals off over closed orbits are 0, or if there is a measurable solution
(cf. our discussion of isospectral rigidity). This was generalized to abelian Anosov actions by Katok
and the author [128].

L IVSIC’ THEOREM Let α be a volume preserving Anosov action of Rk on a compact manifold M,

and β a Hölder cocycle taking values in R. Then β is a coboundary of a Hölder function P if and only

if β(a,x) = 0 whenever ax= x. Furthermore, if β is C∞, so is P.

This provides countably many obstructions to solve the cohomology equation. Unlike in the case
of flows and diffeomorphisms, they mysteriously vanish for higher rank “algebraic” actions as was
shown by Katok and the author. We used harmonic analysis and in particular the exponential decay
of matric coefficients to do this [128]. In thediscrete case, these “algebraic” actions come from
commuting automorphisms of tori or nilmanifolds more generally. In thecontinuous case, they are
actions by left translations of the diagonals inSL(n,R) on SL(n,R)/Γ, Γ a cocompact lattice, and
generalizations of this. We will call such actionsaffine.
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COCYCLE RIGIDITY THEOREM Any R-valued Hölder or C∞ cocycle over an Rn or Zn affine
Anosov action is Hölder or C∞ cohomologous to a constant cocycle provided that all non-trivial
elements of some Z2 subgroup act ergodically.

Katok, Nitica and T̈orök gave a more geometric treatment for a special class of toral actions
[127]. We refer to Nitica and T̈orök’s sruvey [157] for this and other generalizations as well as some
instructive examples.

The cocycle rigidity theorem allowed us to straighten out orbit equivalences of affine actions.
Combining this with structural stability yields Ḧolder local rigidity. Here we call aC∞-actionρ of a
compactly generated groupΓ on a compact manifoldM C∞respectivelyHölder locally rigid if any
C∞-actionρ̃ of Γ onM C1-close toρ on a fixed compact set of generators isC∞ respectively Ḧolder
conjugate to a composite ofρ with an automorphism ofΓ. We improved the Ḧolder regularity of the
conjugacy using the nonstationary normal forms of M. Guysinsky and Katok [97, 96, 63].

LOCAL RIGIDITY THEOREM If n≥ 2, then the Rn or Zn affine Anosov actions with semisimple
linear part are C∞locally rigid.

This result together with the scarcity of the known actions suggests the

Problem: Are all “irreducible” higher rank Anosov actions algebraic?

In the discrete case, a closely related old conjecture asks if all Anosov diffeomorphisms are
topologically conjugate to an affine Anosov automorphism. This would reduce the problem of clas-
sifying higher rank Anosov actions to one about the regularity of the conjugacy. The methods of
the local rigidity theorem may prove helpful. Let us note though that Farrell and Jones constructed
Anosov diffeomorphisms on exotic tori [61]. In the continuous case, there are Anosov flows on
non-homogeneous spaces, e.g. the Handel-Thurston examples, adding to the potential difficulty.

The following phenomenon lies at the core of the stronger rigidity properties of higher rank
abelian Anosov actions. For simplicity let’s consider one of the homogeneous model actions. Then
a singular (i.e. non - Anosov element)a acts via isometries in certain directions. This is clear in
the homogeneous model situations where lack of hyperbolicity corresponds to having eigenvalues
of modulus 1. Thena acts via isometries w.r.t. a suitable metric on the leaves of the foliationF
corresponding to the eigenvectors with eigenvalues of modulus 1. In particular, if the orbit ofa of
a point p recurs to a pointq in the leafF (p) then a limit of suitable powersank will limit to an
isometry ofF (p) which takesp to q. Thus if the orbit ofp is dense onF (p) thenF (p) admits a
transitive group of isometries constructed canonically from the dynamics ofa. This isometry group
will also preserve additional structures invariant under the given action such as conditional measures
with respect toF of an invariant measure. This argument plays a central role in the local rigidity
results and the classification mentioned above as well as the measure rigidity results below where it
was first introduced by Katok.

Measure rigidity : The core phenomenon for higher rank rigidity is closely connected with mea-
sure rigidity. In a nutshell, this is the assertion that invariant measures for higher rank Anosov and
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more generally weakly hyperbolic actions are scarce. This took its first manifestation in Fursten-
berg’s conjecture that any probability measureµ jointly invariant under×2 and×3 on [0,1] is a
convex combination of Lebesgue measure and Dirac measures at periodic points [74]. Under the
additional strong assumption that one of the elements isK for µ, R. Lyons proved this in 1988 [139].
In 1990 D. Rudolph could weaken the hypotheses so that only the entropy of the measure has to be
positive with respect to at least one of the elements [168]. Other proofs and generalizations were
given by A. Johnson, J. Feldman and B. Host [169, 62, 111, 112].

Measure rigidity for higher rank affine abelian actions in higher dimensions was first considered
by Katok and the author in 1994 [128]. Let us call a measure on a homogeneous spaceH/Λ alge-
braic if it is a Haar measure on some closed homogeneous subspace. Margulis and Katok and the
author made the following conjecture [128, 145]. We refer to [145] for a more technical and general
statement as well as the topological analogue.

CONJECTURE: Any invariant ergodic Borel probability measure µ of an affine Anosov action is

either Haar measure on a homogeneous algebraic subspace or the support of µ is contained in an

invariant homogeneous subspace that has a rank one factor for the action.

This is similar in spirit to Ratner’s theorems on measure rigidity of unipotent groups. Katok
and the author used the core phenomenon discussed above to prove this conjecture under addi-
tional strong assumptions [128]. Most importantly, we needed to assume positivity of entropy for
some element in the action. This implies that conditional measures on certain stable manifolds are
not atomic. Suitable ergodicity assumptions combined with the core phenomenon yield non-trivial
groups of isometries which fix the conditional measures. This allows to apply Ratner’s results or
similar more elementary uniform ergodicity facts in the toral case. Recently, Einsiedler, Katok and
Lindenstrauss introduced new ideas to remove extraneous ergodicity assumptions [53, 55]. This
leads to much stronger measure rigidity results and the wonderful applications mentioned below. No
progress has been made however in overcoming the assumption on positivity of entropy.

Measure rigidity has already found several exciting applications. It was used in ergodic theory
to show algebraicity of measurable isomorphisms and disjointness of higher rank affine actions. In
the toral case this was achieved by A. and S. Katok and K. Schmidt , disjointness by A. Katok and
B. Kalinin, and for general affine actions by Kalinin and the author [124, 119, 121]. We refer to
Schmidt’s survey in this Festschrift for generalizations to automorphisms of compact abelian groups
[172]. In number theory, full strength measure rigidity implies Littlewood’s conjecture on simulta-
neous Diophantine approximations. Using the state of the art on measure rigidity, Einsiedler, Katok
and Lindenstrauss have shown that the set of exceptions has Hausdorff dimension 0 [54]. Finally, in
spectral theory, Lindenstrauss established unique quantum ergodicity for certain arithmetic surface
groups [136]. We refer to Lindenstrauss’ forthcoming survey for a more extensive discussion of
these exciting developments [137].

Actions of Large Groups

We will finish this invitation with a glimpse on R. Zimmer’s program of studying actions of
“large” groups on manifolds. While the classical superrigidity results concern the classification
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of the finite dimensional representations of a lattice, their natural nonlinear analogues are actions
of lattices or their ambient Lie groups on finite dimensional manifolds. Mostly we will consider
connected semisimple Lie groupsG without compact factors and of real rank at least 2 or a lattice
Γ in such aG. Even for just finite measure preserving actions, Zimmer found a generalization of
superrigidity, the cocycle superrigidty theorem, to this setting in 1980 [189, 190]. It has become an
indispensable tool for analyzing these actions.

COCYCLE SUPERRIGIDITY THEOREM Measurable cocycles over such actions with values in

semisimple groups without center are either measurably cohomologous to a constant cocycle, i.e. a

homomorphism, or cohomologous to a cocycle taking values in a compact subgroup.

Smooth, volume preserving actions ofΓ or G seem to be very special. In fact, most known actions
are affine actions on a homogeneous manifold. However, Katok and J. Lewis (and later J. Benveniste)
constructed non-algebraic examples of such actions “blowing up” the standard action ofSL(n,Z) on
then-torus by replacing the fixed point by a projective space [126, 13]. This opens up a multitude
of problems. For one, the Katok-Lewis and also the Benveniste examples are affine on an open
dense and conull subset. Is this always true? Is there always an invariant “rigid” geometric structure
such as an affine connection on an open dense conull set? By Zimmer’s superrigidity theorem, there
are always suitableG-invariant measurable affine structures. Further properties such as dynamical
features or an invariant Gromov rigid geometric structure also may force algebraicity. The latter are
geometric structures with finite dimensional automorphism groups, introduced by Gromov in 1988
[89, 43]. Recently, Benveniste and Fisher showed that the Katok-Lewis and Benveniste examples do
not admit an invariant Gromov rigid structure [15]. An example of a classification of actions with
invariant geometric structures is Gromov’s theorem from 1988 [89].

THEOREM Let M be a compact pseudo-Riemannian metric of type (n+,n−). Let G act on M by

isometries, and let (m+,m−) be the type of the Cartan-Killing form of G. Suppose the rank of G is

at least n0−m0 where n0 = min(n+,n−) and m0 = min(m+,m−). Then the G-action is locally free,

and some covering splits equivariantly as S0×G where the fibers project to totally geodesic leaves

normal to the G-orbits.

From a dual point of view, all this amounts to the study of geometric structures with large au-
tomorphism groups. These have been studied closely in in differential geometry using geometric
tools. The novelty here lies in the introduction of superrigidity and tools from ergodic theory and
dynamics.

On the dynamical side, let us mention the author’s work with E. Goetze [84]. For simplicity we
stick to just connected groups.

THEOREM Suppose G has real rank at least 3 and assume that the action is Anosov, volume

preserving and multiplicity-free, i.e. we assume that the Lyapunov spaces of the non-zero Lyapunov

exponents of a regular element g of the group are all one-dimensional. Then some finite cover of

such an action is C∞-conjugate to an affine action.

Let us finally turn to local rigidity. One cannot expect a completely general result here as the
Katok-Lewis and the Benveniste examples are not locally rigid, the latter not even in the class of
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volume preserving actions [126, 13]. The story is quite different however for the affine and projective
actions. It started with J. Lewis who proved infinitesimal rigidity of the standard action ofSL(n,Z) on
then-torus, continued with Hurder and deformation rigidity for the same action. Katok and Lewis
proved local rigidity. We now have the culmination in the following recent result of Fisher and
Margulis [67] which follows a long series of papers by Benveniste, Hurder, Katok, Lewis, Margulis,
Qian, Yue, Zimmer and the author.

LOCAL RIGIDITY THEOREM Let G be a connected semisimple Lie group with all factors of real

rank at least 2. Then the affine actions of G and higher rank lattices Γ in G and semisimple groups

are all locally rigid with C∞-conjugacies in the category of C∞,∞-perturbations.

TheC∞,∞-regularity here refers toC∞perturbations which are sufficientlyC∞-close to the original
action on a generating set. We refer to [67] for more precise versions of the regularity properties.

SL(n,R) and its subgroups naturally act on real projective space. This is a special case of the
action ofG on G/P, P a parabolic subgroup. Call all the latter actionsprojective. The action of a
latticeΓ of g on G/P can be interpreted as the holonomy of a weak stable foliation of the action of
the Cartan subgroup onG/Γ. Katok and the author used this duality to relate local rigidity of higher
rank Anosov actions and projective actions generalizing a partial result by M. Kanai [122, 130].

LOCAL RIGIDITY THEOREMThe projective actions of a cocompact lattice Γ in G are locally rigid.

Zimmer also conjectured that higher rank lattices cannot act faithfully on manifolds of low di-
mension relative to the size of the ambient Lie group. This problem is difficult even for the circle,
and was resolved only in the last few years in the works of D. Witte, Ghys, Burger and Monod, and
Navas [186, 83, 25, 155]. Burger and Monod’s proof calculated the bounded cohomology of the lat-
tice which is closely connected with circle actions. Recently Polterovich showed that non-uniform
irreducible higher rank lattices cannot act by area preserving diffeomorphisms on a surface of genus
at least 1 [163]. This is part of a general result about growth properties of groups preserving a sym-
plectic form. Using the structure theory of area preserving diffeomorphisms, Franks and Handel
showed for any closed surface that many lattices cannot act [70]. We refer to [59] for an extensive
survey of this topic.

This is but a small sample of important results in this field. Many other developments took place
in recent years, in particular concerning actions on geometric structures, orbit equivalence, isotropy
and others. We refer to [89, 43, 134, 75, 64, 65, 66, 156] for detailed presentations.
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[71] Freire, A.; Mãne, R., On the entropy of the geodesic flow in manifolds without conjugate points. Invent. Math. 69

(1982), no. 3, 375–392.

[72] Furman, A., Gromov’s measure equivalence and rigidity of higher rank lattices. Ann. of Math. (2) 150 (1999), no. 3,

1059–1081.

[73] Furman, A., Orbit equivalence rigidity. Ann. of Math. (2) 150 (1999), no. 3, 1083–1108.

[74] Furstenberg, H., Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math.

Systems Theory 1 (1967), 1–49.

[75] Gaboriau, D., On orbit equivalence of measure preserving actions. Rigidity in dynamics and geometry (Cambridge,

2000), 167–186, Springer, Berlin, 2002.

[76] Gaboriau, D., Invariantsl2 de relations d’́equivalence et de groupes. Publ. Math. Inst. HautesÉtudes Sci. No. 95
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[77] Gaboriau, D., Côut des relations d’équivalence et des groupes. Invent. Math. 139 (2000), no. 1, 41–98.

[78] Gallot, S., Curvature-decreasing maps are volume-decreasing (on joint work with G. Besson and G. Courtois). Pro-

ceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. 1998, Extra Vol. II,

339–348.
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et les faux plans projectifs. Invent. Math. (2003).

[134] Labourie, F., Large groups actions on manifolds. Proceedings of the International Congress of Mathematicians, Vol.

II (Berlin, 1998). Doc. Math. 1998, Extra Vol. II, 371–380.

[135] Leeb, B., A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymp-

totic geometry. Bonner Mathematische Schriften 326. Universitdt Bonn, Mathematisches Institut, Bonn, 2000.

[136] Lindenstrauss, E., Invariant measures and arithmetic quantum unique ergodicity. Preprint.

[137] Lindenstrauss, E., Rigidity of multi-parameter actions. in preparation.

[138] Livsic, A., Cohomology of dynamical systems. Math. USSR Izvestija, 36 (6), 1972.

[139] Lyons, R., On measures simultaneously 2- and 3-invariant. Israel J. Math. 61 (1988), no. 2, 219–224.

[140] Manning, A., Topological entropy for geodesic flows. Ann. of Math. (2) 110 (1979), no. 3, 567–573.

[141] Margulis, G. A., Discrete groups of motions of manifolds of nonpositive curvature. Proceedings of the International

Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 2, pp. 21–34. Canad. Math. Congress, Montreal, Que.,

1975.

[142] Margulis, G. A., Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than 1. Invent. Math.

76 (1984), no. 1, 93–120.

[143] Margulis, G. A., Discrete subgroups of semisimple Lie groups. Ergebnisse der Mathematick und ihrer Grenzgebiete

(3), 17. Springer-Verlag, Berlin, 1991.

[144] Margulis, G. A., Oppenheim conjecture. Fields Medallists’ lectures, 272–327, World Sci. Ser. 20th Century Math., 5,

World Sci. Publishing, River Edge, NJ, 1997.



AN INVITATION TO RIGIDITY THEORY 25

[145] Margulis, G. A., Problems and conjectures in rigidity theory. Mathematics: frontiers and perspectives, 161–174, Amer.

Math. Soc., Providence, RI, 2000.

[146] Margulis, G. A., Diophantine approximation, lattices and flows on homogeneous spaces. A panorama of number
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