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1. Introduction. Ratner's rigidity theorem [Ral] says that a 

measurable isomorphism of the horocycle flows of two surfaces of 

constant negative curvature and finite area induces an isometry of the 

surfaces. There have been various generalizations to variable 

negative curvature [FeO] and homogeneous spaces of higher dimension 

[WI,2,F] as well as further-reaching rigidity results like the 

classification of factors and jolnlngs [Ra2,S]. 

In the present paper we study Fuchsian groups P wlth infinite 

co-area. Let ~2 be the hyperbolic plane. Recall that F is called 

qeometrically finite if P has a finite-sided polygon as fundamental 

domain in ~2. Let L(F) be the limit set of P, i.e. the set of 

cluster points of any orbit of P in ~2 For a Fuchslan group r • s 

Patterson constructed a finite measure in L(F) c a~ 2 = S 1 with the 

property that for all 7 c r 

y m = " - l ~ ' 1 6 . m  

where 5 is the Hausdorff dimension of L(F) (and y re(A) = m(y(A))) 

[P,SI,2]. Such a measure is called qeometrlc. For geometrically 

finite groups there is a unique geometric measure m (up to scaling) 

[$2]. The support of m is always the limit set L(F). If P is 

not elementary i.e. if P is not a finite extension of an abelian 

group then m has no atoms. Let M = \~2 and SM its unit P 

tangent bundle. As usual, identify S~ 2 with (slxsl-diag)×R. The 
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Sullivan measure ~ on S~ 2 is the measure on S~ 2 locally given by 

d~(x,y,t) = dm(x)xdm(y)×dt 
28 

I x-yl 

where ~x-y] is the Euclidean distance of x and y in S I. 

It is easily seen that ~ is invarlant by the action of F 

on S~ 2 and therefore ~ descends to a measure ~ on F\S~ 2 = SM. 

For geometrically finite groups, B has finite mass and B is 

invariant and ergodlc for the geodesic flow gt [S2]. Further, the 

support of B is the nonwandering set A of the geodesic flow on 

SM. 

The conditional measure Bx on the unstable horocycle wU(x) 

for xe A expands uniformly under the geodesic flow, more precisely 

* 8t 
(gt) Bx = e ~gtx 

where 8 is the Hausdorff dimension of L(F) as before. Let Z(.,.) 

be the distance function on horocycles induced by the canonical metric 

on S~ 2 invariant under isometrles of ~2 

Theorem. Let F 1 and F 2 be Fuchsian groups in PSL(2,~). Assume 

that F 1 is geometrically finite. Denote by M i, i = 1,2, the 

orhifolds ri\~2. Suppose SM 2 has positive infectivity radius. 

Let A1 he the nonwandering set of the geodesic flow of M 1, and 

denote by Pl the Sullivan measure on SM 1 . Let ~: A1--~SM2 be a 

measurabJe map with the properties 

a) for ~I - a.e.x, ~(wU(x)nA1) c wU(~(x)). 

a) for ~1 - a.e.x and ~x - a.e.y on wU(x), 

~ ( ¢ ( x ) , ¢ ( y ) )  = ~ ( x , y ) .  

T h e n  F 1 i s  c o n j u g a t e  t o  a s u b g r o u p  o f  F 2 i n  t h e  t s o m e t r y  g r o u p  o f  

~ 2 .  M o r e o v e r ,  a f t e r  a c o n s t a n t  s h i f t  a l o n g  t h e  h o r o c y c l e  ~ b e c o m e s  

a R i e m a n n i a n  c o v e r i n g  m a p .  
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In general, F 1 may have infinite index in F 2. However, there 

is one important special case. 

Corollary. In addition to the hypotheses of the Theorem assume that 

F 2 is geometrically finite and that the Hausdorff dimensions 61 of 

the limit sets L(rl) coincide. Then r 1 is a subgroup of finite 

index of F 2. Furthermore, after a constant translation along the 

horocycle ~ becomes a finite Riemannian covering. 

The theorem and its corollary have a generalization to geometri- 

cally finite groups of isometries of hyperbolic n-space. The proofs 

are much more technical and will appear elsewhere [FS]. In fact, for 

simplicity of exposition in the present paper we will always make the 

additional assumption that F 1 is convex cocompact [$1]. This is 

equivalent to A 1 being compact. 

The proof of the theorem follows the argument in [Ral] quite 

closely. The key ingredient of the proof is the polynomial divergence 

of orbits just as in the cocompact case IRa1]. However, we need to 

take great care in order to control the singular nature of the 

Sullivan measures. In fact, we were quite surprised to see how robust 

the basic structure of the proof is. In the cocompact case the 

conditional measures on horocycles are simply Lebesgue measures which 

scale trivially under dilation. The main difference in the present 

case is that the conditionals of Sullivan measures do not enjoy this 

property. Therefore, we need to use the geodesic flow to "scale" 

these measures. 

Thanks are due to D. Rudolph for several useful conversations. 

We are also greatful for the hospitality of the University of Maryland 

during the Special Year in Dynamics 1986/87. 

2. condltlonal Measures 

Here we describe the conditional measures in greater detail and 

prove some basic properties. 
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Let F be convex cocompact and A be the nonwandering set of 

the geodesic flow gt on F\S~2. Denote by A and ~ the lifts of 

A and ~ to S~ 2. For xe S~ 2 let ~x be the measure on wU(x) 

which projects to BF.x" 

If xe S~ 2 let P(x) denote the point at infinity of the 

geodesic ray determined by x. Then the restriction of P to wU(x) 

is a diffeomorphism onto sl-{p(-x)}. Endow wU(x) and S 1 with 

their usual Riemannian length. Then we have for x~ A and y c wU(x) 

dm(P(y)) 
(1) d~x(Y) = IP' I 6 

Let h t be the classical horocycle flow on S~ 2 [Ral]. For 

xe~ identify wU(x) with ~ by 

t e ~--~htx e wU(x). 

By abuse of notation, let ~x be the measure on ~ induced by ~x 

on wU(x). 

Lemma 1. The map A×Ro(-~} × ~u(~} --~ ~u(~} given by 

(x,a,b) ~--~x(]a,b[) 

is continuous on ~x~xR. 

Proof. Let Xn--,x, an--~a and bn--~b as n--~ where 

an,bn,a,be~ and Xn,Xe ~. Then P(]an,bn[ ) A P(]a,b[) is contained in 

arbitrarily small neighborhoods of (P(a),P(b)}. Since m does not 

have atoms and P' is uniformly continuous on compact sets, the 

claim follows from formula (1). • 

Lemma 2. For x~ A, ~x has infinite mass. 

u 
Proof. Suppose that ~x(W (x)) < ~. Since F is convex cocompact 

there are sequences ¥keF such that T k'g-k x converges to 
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yeX as k--~®. Then ~yk.g k x converges to ~y. Note that 

-Sk 
~~Yk" g-kx(WU(~k'g-kX) ) = ~Pg-k(WUlg-kx) ) = e ~x(WU(x) ) 

converges to 0. By Lemma 1, for every 0 < R < 

py(]-R,R[) = l i ~  ~ ]-R,R[). 
k ' -~  NYk" g-k x( 

Thus wU(y) has 0 mass. This is a contradiction since by 

formula (1) no horosphere at a point in A has 0 mass. 

Lemma 3. For all x E A we have 

(a) for all -~0 <a<~, 

y~x,yllm inf~ A ~y(]a',b'[) _> ~x (]a,o~[) 

a'~a 

(b) for all -~<b<~, 

llm Inf ~y( ]a',b'[ ) -> ~x( ]-~,b[ ) • 
y-~x, y ~ 
a, -~-<D 

b'~b 

(C)  l i m  ~ ] a , b [  ~ ) = 
y~x,y c ~ Y( ) = x( l-~'®[ " 
a~-~ 

Proof. (a) Set A -- ~x(]a,-~[). 

First assume A <~. Let ~ > 0. Pick N so large that 

~x ( ]a,N[ ) -> A - ~ . By Lemma i there are neighborhoods 

U of x in A and V of a such that for all yE U, 

a'~V and all n>N 

~ y ( ] a ' , n [ )  -> A - 2 ~ .  

T h i s  i s  e q u i v a l e n t  t o  t h e  c l a i m .  

Now s u p p o s e  A = ~ .  L e t  M > 0 .  P i c k  N s o  l a r g e  t h a t  

~x(]a,N[) >-M. A g a i n  t h e r e  i s  a n e i g h b o r h o o d  U o f  x 

in A and V of a such that for all ye U, a'e V 

and all n > N 

~y(]a',n[) ~ M/2. 
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Again this implies the claim. 

(b) The proof is similar to that of (a). 

(c) By Lemma 2, since x• A, ~x(]-~,~[) = ~. 

Given M > 0 pick N so large that 

~xll-N,N[) > S. 

By Lemma I there is a neighborhood U of x such that 

for all ye U, 

M 
~y(I-N,N[) > g. 

Lemma 4. Fix 0 < ~ < 1. Suppose we have sequences {Xn} c A, and 

-~< a < b < ~ with the properties 
n n 

< ct 
(a) a n -~(bn-an) and a ( bn-a n) < b n • 

(b) ~x (]an'bn[) = 1. 
n 

If (x,a,b) is a limit point of {(Xn,an,bn)} then -~ < a , b < 

and ~x(]a,b[) = 1. 

Proof. If a = -~ then b = ~ and vice versa by (a). Then, by 

Lemma 3(c), after passing to a subsequence, we have 

= ~x(]-~,~[) = lim ~x (]an'bn[) = 1. 
n~ n 

Therefore a and b are finite, and the last statement follows from 

Lemma 1. s 

3~ Polynomial Divergence of Hor0cycles 

As before, denote by h the classical unstable horocycle flow 
s 

on S~ 2 [Ral]. Recall that hs(X) is given by polynomials in s and 

x. Let d be the distance function determined by the canonical 

metric on S~ 2. There are universal constants 1 > P > O, C 1 > 1 and 

n o such that for all x,y~ S~ 2 and all intervals Ic ~ on which 
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d2(hsX,hsY) < p 

there exists a polynomial Q of degree at most n O such that 

1 d 2 Cq Q(s)~ (hsX,hsY) ~ C 1Q(s) for all s~ I. 

In the next section we will use the following lemma in comblna- 

tlon wlth the above to estimate the average distance between 

horocycles. 

Lemma 5. There is a constant C 2 = C2(F,no) < 1 with the following 

property: 

Let a < b in ~ and xe A. If Q is any nonnegative poly- 

nomial on [a,b] of degree at most n O such that 

Q(a) = Q(b) = sup Q(t) = M, then 
a- < t- < b 

b 

~ Q(t)d~x(t) ~ ~x([a,b])-M.C 2. 

a 

Proof. Without loss of generality we may assume that 

(1) sup ~Q(t)~ = Q(a) = Q(b) = 1 and deg Q~ n O. 
t E [ a , b ]  

Also, we may suppose that ~ [a,b] ~ O. 

Since the set of polynomials satisfying (.) is compact, there 

exists B < 1 such that for all polynomials Q satisfying (*) we have 

Q(t) >~ for all t~ Is(a,b): = - B , --~-- + B • 

By a scaling argument, S is independent of a and b. 

Now we argue by contradiction. Suppose there exist sequences 

{Xn) c X, [an,bn] c ~ and polynomials Qn' nonnegatlve on [an,bn] 

and satisfying (.) on [an,bn] such that 

(**) ~x[an,bn] w O. 

and 
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b n 

(***) ; Qn(t ~ (t) < 1 
)d~xn V ~x([an,bn])" 

a n 

By (*), ('*) and ('',) we see that ~Xn(IB(an,bn) ) # O. Since the 

support of ~ is A there are x n• I~(an,bn) such that h T x n• A. 
n 

Therefore, replacing x n by h T x n, Qn(t) by Qn(t-Vn), a n by 
n 

an-X n and b n by bn-X n, we may assume, in addition, that 

bn-a n 
a < -B 
n 2 

and 
bn-a n 

bn > ~ ~ 

We now proceed to normalize the measures of [an,bn]. Set 

1 
a n = - ~ log ~X [an'bn] 

n 
and 

Yn = go Xn 
n 

where 6 is the Hausdorff dimension of L(F). 

We have 

o o ]I 
3. F[ane n,bne nil = e an,b n 
Yn LL JJ PxnL = I. 

Since F is convex cocompact after passing to a subsequence of (yn) 

there are YnCr such that y: = llm 7ny n is in A. Note that the 
n-~00 

a o 
sequences yny n, Cn: = ane n and dn: = bn e n satisfy the hypothe- 

ses of Lemma 4. Therefore, passing to further subsequences, we may 

assume that llm c = c > -co, lim d n = d < ~ and _ ~y ([c,d]) = 1. 
n_#~ n n-~0D 

-(7 
Set Qn(t ) = Qn(t.e n). The polynomials Qn(t) satisfy 

d b 
n n 

Qn(t ) d~yn(t): 1 I Qn(t)d~xn(t) 
C ~Xn( [an'bn] ) a 
n n 

since the geodesic flow expands the conditional measures on horocycles 
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uniformly. Therefore, by ("'') 

d n 

Qn(t) d~ynYn(t) tends to 0 as n--*~. 

c 
n 

Passing to a subsequence, Qn converge to a polynomial Q which is 

nonnegatlve on [c,d] and for which Q(c) = Q(d) = I. Since c and 

d are finite the measures ~ny n converge to ~y. Therefore 

b 

~Q(t) d~y(t) = O. 

a 

Since Q ~ 0 and _ ~y is not atomic this is a contradiction. 

4. Proof of the Theorem. Part I. 

In this section we investigate how a map between horocycle folia- 

tions intertwines with the geodesic flows. We refer to the statement 

of the Theorem for all notations, and assume in addition that F 1 and 

F 2 are two convex cocompact Fuchslan groups in PSL(2,~). 

Note that M 1 and M 2 carry horocycle flows since they are 

orientable. By [Ru, Theorem 17] the horocycle foliation of M 1 is 

ergodlc for PI" Therefore ~ either preserves the orientations of 

a.e. horocycle or reverses them. Conjugating F 2 by a =~ ~] if 

necessary we may assume that ~ preserves the orientation of a.e. 

horocycle. By abuse of notation we will denote the horocycle flows on 

SM i (as well as on S~ 2) by h t. 

Modifying # on a nullset, if necessary, we may assume that for 

all xe A I, #iwU(x) is an isometry onto its image (since there are 

no closed horocycles). 

Recall the universal constants and p and C I introduced in the 

beginning of Section 3. Let C 2 be the constant of Lemma 5 for F 1. 

Denote by R the inJectivlty radius of M 2. For every ~ < 1 set 
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C2u 
- min(R,o). Pick 0 < ~ < ~. By Lusin's theorem there is a 

compact set K with ~l-measure at least i-~ on which ~ is 

unlformly continuous. Choose ~ > 0 such that whenever x and y 

belong to K and d(x,y) < O then d(~(x),~(y)) -< 2" Let ~ > O be 

a number such that for all xe Mi, i = 1,2 and all la} < ~, 

d(x,ga(x)) < mln (~, O, ~). By [Ru] the set 

T 
" ={ A ,lim 1 ; 

A 1 xe l~T-~0 ~x([-T,T]) XK(htx)dBx(t) > 1-4 

-T 

has full ~l-measure. 

For xc ^1 and la[ < ~, set 

Px(t) = min(d2(ht#(x), htga#(g_aX)), I}. 

If x~ A1, we have 

1) Vte~ 

2) Vte~ 

ht@(x ) = % ( h t x  ) 

h t g a ~ ( g _ a X )  = g a h t e _ a ~ ( g _ a x )  = 

= g a ~ ( h t e _ a g _ a X )  = 

= g a ~ ( g _ a h t x ) .  

So f o r  t ~ R  we have  

P x ( t )  = m i n ( d 2 ( ~ ( h t x ) ,  g a ~ ( g _ a h t X ) ) ,  1}. 

Whenever  h t x  and  g _ a h t x  b o t h  b e l o n g  t o  K, o u r  c h o i c e  o f  a 

implies 

d(~(htx), ga~(g_uhtx)) ~ d(@(htx), @(g_ahtx)) + 

+ d(~(g_~htx), ga#(g_ahtx)) < 

6 
< ~ + ~ = 

and therefore Px(t ) < ~2 

S 
From now on, fix x~ A 1 n gaA1. We claim that for T 1 and T 2 

sufficiently large 
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Bx({te [-Ti,T2][htxe K and g_ahtXe K}) -> (I - 3~)Bx([-T1,T2]). 

TO see this just observe that 

y e wU(x) ~ g_ayewU(g_a x) 

has Radon-Nikodym derivative e -6a < 2. 

Therefore we obtain for all sufficiently large T 1 and T 2, 

T 2 

1 fPx(t)d~x(t) ~ 62 
s Bx([-TI'T2]) + 3~ ~ 4E. 

-T 1 

Using this we are going to show that: 

there is T O > O such that 

• ~ either Px(t) < p for all t > T O , 

o__rr Px(t) < P for all t < -T O 

where p = ~ min(p,R). 

Suppose not. Then for all T O > 0 there are T 1 > T O and T 2 > T O 

such that property - holds for TI,T 2 and Px(-Tl) >p and 

Px(T2) > O. 

Let [ai,bi] be the intervals in [-TI,T 2] where Px(t) ~ P. 

For every interval [ai,bi] there exists a polynomial Qi(t) such 

that for all t~ [ai,bi], 

c~Qi(t) < ~ C 1 Qi(t) • Px(t) 

Let [ci,j,dl,j] be the subintervals of [ai,bi] where Qi(t) ~ D/C I. 

By Lemma 5 the Hx-average of Qi(t) on each [ci,j,dl, j] is 

greater than C2.P/C I. Since C 2 < 1 the average of Qi on [al,b i] 

is also greater than C2-;/C1, and therefore the average of Px(t) 

on [ai,bl] is greater than C2-;/C ~. 

Thus, 

T 2 

1 
~x([-TI,T2]) ~Px(t)d"x (t) ~ c2-p/c ~ 

-T 1 

since C 1 > 1. By our choice of ~ and p this contradicts *, and 
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• " is proved. 

Since p < R there are lifts Yl and Y2 of #(x) and 

@u#(g_ux) in SSl 2 such that d(htYl,htY2) is bounded by p either 

as t--~ or as t--~-~. Thus Y2 = h~Yl for some • = t(x,a) <p, 

and g~@(g_ x) = hT(x,~) @(x ). 

As in IRa1, Lemma 3.3] we can now conclude. 

Proposition 6. There is pe~ such that for #l-a.e. x and all 

t c 

h o#ogt(x ) = gtoh o@(x). 

P r0of of the Theorem. Part II. 

By Proposition 6, replacing ~ by hTo~, we may and will assume 

from now on that ~ commutes with both geodesic and unstable horo- 

cycle flow on a set O of full #l-measure. We will first show that 

commutes with the stable horocycle flow k t (#l-a.e.). As the 

proof is similar to that of Part I we will only present an outline 

of the argument. 

Let p, ~, K, ~ , e and P be as in Part I. For T > 0 set 

K T = {xc Olfor all t I > T and t 2 > T 

t 2 

1 [XK(hsX)d~x(S) > 1 - ~}. 
#x([-tl,t2]) 

-t i 

By [Ru, Theorem 17], #I(KT)--~I as T-~. Pick T O > 0 such that 

2 
#I(KT0) > ~ and set K 0 = KT0. Set 

T 

K = xe Q JXK0(gsx)ds > . 

0 

Since gs is ergodic for ~i' we have ~I(K) = 1. Denote by ~ 

the conditional measures on stable horocycles wS(x) for xe A 
1" 

Then the set 
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{X~ -'KlktXE, K for #S-a'e'x t }  

has full Pl-measure. 

Let ~ be so small that for all Irl < ~ the holonomy map from 

wU(x) to wu(krx) along the weak stable foliation 

hsxcWU(x) hq(s,r)(krX) ~-- wU(kr x) 

1 has Jacobian between ~ and 2 for all s e [-1,1]. Further, we 

assume ~ to be so small that for all xe Mi, i=1,2, and all 

- 
Irl <7, t > 0 and se [-I,I], d(gthsX, gthq(s,r)kr(x)) <min(~,0). 

Suppose that Irl < ~ and both x and k x belong to K. 
r 

Therefore there is a sequence Sn--~ such that gs x e K 0 and 
n 

s s 
gs xe K O. For all s > 0 and te [-e ,e ] we define 

n 

Px,s(t) = min(d2(ht~(gsX), htk _s~(k _sgsX)), 1). 
-re re 

As in Part I, one can show that for all s n >~nT 0 we have 

s 
n 

e 

= sl s x (t) ~ 4~ 
A: [ I - e  n e n l t  ~ Px'sn(t)d#gsn 

# g s  xLL ' JJ Sn 
-e 

n 

since gSn x and g s  k x both belong to K 0. On the other hand, let 
n r 

Sn eSn] " .  
[ai,bi] c [-e , be the intervals where Px,sn(t ) <- p If neither 

8 s 
n n 

-e nor e 

C2P 
I t h a t  A ~ 2 

C 1 
exist sets I 

n 

- e  s o r  e s o n  w h i c h  P x , s ( t )  < p .  I n  t h e  c o m p l e m e n t  o f  I n t h e  

average of Px,s(t) is again greater than Be. Therefore for at 

least one of the components of I n , call it Jn' we have 

belong to such an interval then it follows as in Part 

= 8~. This contradicts the above. Therefore there 

consistlng of at most two intervals containing one of 
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#x(g-s Jn) Pgx s(Jn) 1 
n 

= >~. 
P x [ - i ,  1] ( [_e s eS]) 

#gx s 

Passing to a subsequence we may assume that all g-s Jn contain 
n 

the same endpolnt. Since Px is not atomic there is an interval J 
s 

contained in all g - s  Jn"  For  a l l  s n >  T O and  a l l  t e e  n . j  we 
n 

have Px,sn(t) ~ p. A simple calculation shows that If dlhtx,htY) < a 

on an interval [-L,L] then there is a constant C(a) such that 

y = k~ig~2h~3x where ~I ~ C(a), ~2 ~ C(a)/L and ~3 ~ C(a)/L2" Let 

b be the midpoint of J and let 2L be the length of J. Then 

gs x) = k lg ~2h£ h Sn~(gsn x) h s k -s ~ (k -Sn n 3 b. 
be n -re n r. e e 

where ~1 ~ C( ; ) ,  ~2 ~ C( ; ) /L .eSn and ~3 ~ C(;) /L2e2Sn" The usual 

commutation rule implies that ~(x) = k_r~(kr x) for all Irl < ~. 

Therefore # commutes with the actions of PSL(2,~) on SM 1 and 

SM 2 on a set of full Pl-measure. Clearly this allows us to extend 

to a PSL(2,~)-equivariant map from SM 1 to SM 2. Lift ~ to a 

map ~ of the universal cover S~ 2 = PSL(2,~) of SM i, i = 1,2. 

Then ¢ is equlvarlant with respect to the action by right 

translations by PSL(2,~) on itself. 

Let go = ~(1). Then 

gorl = ~ ( 1 . r l )  = ~ ( r l . 1  ) c r 2 . ~ ( 1 )  = r2.g o. 

Thls proves the Theorem. 

6. Proof of the Corollar7 

As In the statement of the Corollary assume now that F 2 is geo- 

metrically finite and the Hausdorff dimensions of L(rl), i = 1,2, 

coincide and are equal to 6. By [$I,2, Theorem 1] there exists a 

unique geometric measure of exponents ~ on L(F2). Therefore there 
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2 
exists a unique measure (up to scaling) on F2\S~ whose conditional 

measures on horocycles expand (contract) uniformly with exponent 6 

under gt" This is the Sullivan measure P2 on SM 2. Observe that 

#(A1) c A2, where A 2 is the nonwandering set of the geodesic flow on 

SM 2. Hence, the support of ~.(pl ) is contained in A 2. As the 

conditional measures of #~(pl ) expand (contract) uniformly with 

exponent 6, 0.(~1 ) is a constant multiple of B2. By [S2, Theorem 

3] both B1 and ~2 have finite total mass. Clearly this shows that 

the covering ~: SMI--~SM 2 is finite. Therefore Pl is conjugate 

to a subgroup of finite index in F 2. 
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