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1. Introduction. Ratner's rigidity theorem [Ral] says that a

measurable isomorphism of the horocycle flows of two surfaces of
constant negative curvature and finite area induces an isometry of the
surfaces. There have been various generalizations to variable
negative curvature [Fe0] and homogeneous spaces of higher dimension
[W1,2,F] as well as further-reaching rigidity results like the
classification of factors and joinings [Ra2,3].

In the present paper we study Fuchsian groups T with infinite

2

co~area. Let H be the hyperbolic plane. Recall that I' is called

gecometrically finite if I has a finite-sided polygon as fundamental

domain in mz. Let L{(T') be the limit set of o', i.e. the set of

2

cluster points of any orbit of I in H For a Fuchsian group T,

1

Patterson constructed a finite measure in L(I') c amz = 8 with the

property that for all perl

where & is the Hausdorff dimension of L(I') (and 7‘m(A) = m(y(A)))
[P,S1,2]. Such a measure is called geometric. For geometrically
finite groups there is a unique geometric measure m (up to scaling)
[S2]. The support of m is always the limit set L{(rj). If I |is

not elementary i.e. if T is not a finite extension of an abelian

2

group then m has no atoms. Let M = _\H and SM its unit

r

2

tangent bundle. As usual, identify SH with (Slxsl—diag)xm. The

»
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2

Sullivan measure ﬂ on SH” is the measure on Sﬁz locally given by

dm{x)xdm{y)xdt
26
Ix-yl

dp(x,y,t) =

where |[x~-y} 1is the Euclidean distance of x and y in Sl.

It is easily seen that J is invariant by the action of T
on sz and therefore ﬁ descends to a measure g on I‘\S&i2 = SM.

For geometrically finite groups, ¥4 has finite mass and u is
invariant and ergodic for the geodesic flow gy [s2]. Further, the
support of u is the nonwandering set A of the geodesic flow on
SM.

The conditional measure Ky on the unstable horocycle Wu(x)
for x€A expands uniformly under the geodesic flow, more precisely

St

*
(gy) p, =e u
t x gtx

where & is the Hausdorff dimension of L{I'} as before. Let <£(.,.)
be the distance function on horocycles induced by the canonical metric

on sm2 invariant under isometries of mz.

Theorem. Let I'1 and F2 be PFuchsian groups in PSL{(2,R). Assume
that Fl is geometrically finite. Denote by Mi’ i=1,2, the

orbifolds r \Hz. Suppose SM has positive injectivity radius.

i 2
Let A1 be the nonwandering set of the geodesic flow of Ml' and
denote by ”1 the Sullivan measure on SMl‘ Let ¢: Al-—-;SM2 be a
measurable map with the properties
a) for u, - a.e.x, S (WH(R)NA ) c WS (X)) .

a} for ”1 - a.e.x and 4, - a.e.y on Wu(x),

o (x).e(y)) = &=X.,¥)-
Then r1 is conjugate to a subgroup of F2 in the isometry group of
Hz. Moreover, after a constant shift along the horocycle ¢ becomes

a Riemannian covering map.
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In general, rl may have infinite index in Fz. However, there

is one important special case.

Corollary. In addition to the hypotheses of the Theorem assume that
rz is geometrically finite and that the Hausdorff dimensions 51 of

the limit sets L(Fi) coincide. Then Fl is a subgroup of finite
index of F2. Furthermore, after a constant translation along the
horocycle ¢ becomes a finite Riemannian covering.

The theorem and its corollary have a generalization to geometri-
cally finite groups of isometries of hyperbolic n-space. The proofs
are much more technical and will appear elsewhere [FS]. In fact, for
simplicity of exposition in the present paper we will always make the
additional assumption that F1 is convex cocompact [S1]). This is

equivalent to A being compact.

1
The proof of the theorem follows the argument in [Ral] guite
closely. The key ingredient of the proof is the polynomial divergence

of orbits just as in the cocompact case [Ral]l. However, we need to
take great care in order to control the singular nature of the
Sullivan measures. 1In fact, we were gquite surprised to see how robust
the basic structure of the proof is. 1In the cocompact case the
conditional measures on horocycles are simply Lebesgue measures which
scale trivially under dilation. The main difference in the present
case is that the conditionals of Sullivan measures do not enjoy this
property. Therefore, we need to use the gecdesic flow to "scale"
these measures.

Thanks are due to D. Rudolph for several useful conversations.
We are also greatful for the hospitality of the University of Maryland

during the Special Year in Dynamics 1986/87.

2. Conditional Measures

Here we describe the conditional measures in greater detail and

prove some basic properties.
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Let T be convex cocompact and A be the nonwandering set of
the geodesic flow g, on r\SIH . Denote by A and ﬁ the lifts of
A and u to sz. For Xxe 9H2 let ﬁx be the measure on Wu(x)

which projects to [

If xe ﬂHz let P(x) denote the point at infinity of the
geodesic ray determined by x. Then the restriction of P to Wu(x)
is a diffeomorphism onto Sl—(P(—x)}. Endow Wu(x) and S1 with

their usual Riemannian length. Then we have for x€A and ye Wu(x)

W = Sm(P(y))
(1) dllx(Y) W—
Let ht be the classical horocycle flow on sz [Ral]. For

xe A identify W%(x) with R by

teR o—»htxe Wu(x) .

By abuse of notation, let Zx be the measure on R induced by ﬁx

on Wu(x).

Lemma 1. The map AxRU{—®} x Ru{w} — Ru{®} given by
(x,a,b) —pu_(la,bl)

is continuous on AxRxR.

Proof. Let X, — X, an—ra and bn—>b as n—® where

an,bn,a,be:R and xn,xe:A. Then P(]an,bn[) A P(la,b[) is contained in
arbitrarily small neighborhoods of (P(a).,P(b)}. Since m does not
have atoms and P’ is uniformly continuous on compact sets, the

claim follows from formula (1). ]
Lemma 2. For xeA&, ﬁx has infinite mass.

Proof. Suppose that hx(w“(x)) < . Since I 1is convex cocompact

there are sequences €I’ such that Yt 9o X converges to

Tx
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yeA as k—®. Then &

converges to ji_. Note that
ORI o y

b4

-8k

0 . ~ u
9~k(w (g_px)) = e B (Wi(x))

u ~
. (Wiy, rg_ x)) =p
rkgkx k k

converges to 0. By Lemma 1, for every O<R<®

2 (1-R,R{) = lim 2 (1-R,R[) .
¥ ko Tk I

Thus Wu(y) has O mass. This is a contradiction since by
formula (1) no horosphere at a point in A has 0 mass.
Lemma 3. For all x€A we have

(a) for all -®<a<o®,

lim inf  p_(la’,b'[) 2 p (la,®[)
Y+X,¥Y €A ¥

a’'-a

b’ -»®

{b}) for all -»<b<w,

lim inf @ (Ja’,b'[) > W, (1-=,bl).
yox,y €k Y

a’-»-o

b’-b

n
8

(c) lim B (Ja,bl) = p (]-=,®[)
y+x,yek Y
a-r -
b
Proof. (a) Set A=7:x(]a,—co{).

First assume A<®, Let £ >0. Pick N so large that

Tlx(]a,N[) >A~¢. By Lemma 1 there are neighborhoods

U of xin A and V of a such that for all yeU,

a’eV and all n>N

ﬁy(]a’,n[) > A - 2.

This is equivalent to the claim.

Now suppose A = ®. Let M>0. Pick N so large that
Bx(]a,N[) > M. Again there 1s a neighborhood U of x
in A and V of a such that for all yeU, a'eV

and all n>N

sz(la'.n[) > M/2.
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Again this implies the claim.
(b) The proof is similar to that of (a).

{c}) By Lemma 2, since xe<A, szﬂ*w;@[} = ®,

Given M>0 pick N so large that

f, (1-N,N[) > M.

By Lemma 1 there is a neighborhood U of x such that
for all ye U,

~ M

uy(]-N,N[) > 5 n

Lemma 4. Fix 0<a<1. Suppose we have sequences {xn} cA, and

- < an < bn <® with the properties
a o
(a) a, < 'i(bn an) and 'i(bn—an) < bn'

(b) ny (Ja b [) = 1.
n

If (x,a,b) is a limit point of ((xn'an’bn” then -~®<a, b<®

and }lx(]a,b[) 1.

Proof. If a = -» then b = ® and vice versa by {(a). Then, by

Lemma 3(c), after passing to a subsequence, we have

© =l d-eel) = Lmf, (agb0) = 1.

Therefore a and b are finite, and the last statement follows from

Lemma 1. n

3. Polynomial Divergence of Horocycles

As before, denote by hs the classical unstable horocycle flow

2

on SH® {Ral]. Recall that hs(x) is given by polynomials in s and

®x. Let 4 be the distance function determined by the canonical

metric on Sle. There are universal constants 1>p >0, c1 >1 and

n such that for all x,ye sw2

0 and all intervals IcR on which
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2
d (hsx,hsy) <p
there exists a polynomial Q of degree at most n, such that

Q(s) = dz(h x,h y)<C, Q(s) for all sel.
5 <4 1

Ora

1

In the next section we will use the following lemma in combina-
tion with the above to estimate the average distance between

horocycles.

Lemma 5. There is a constant 02 = CZ(F,nO) <1 with the following
property:

Let a<b in R and xeA. If Q is any nonnegative poly-
nomial on [a,b] of degree at most n, such that

Q(a) = Q(b) = sup Q(t) = M, then
ast<b

b
[aterdiy () 2 B (ra,b1)-MeC,.
a

Proof. Without loss of generality we may assume that

(*) sup fQ(t)| = Q(a) = Q(b) = 1 and deg Q= n,.
tefa,b]

Also, we may suppose that 4 [a,b] » O.
Since the set of polynomials satisfying (*) is compact, there

exists B <1 such that for all polynomials Q satisfying (*) we have

- +b b-
Q(t) >% for all teIg(a,b): = [9-‘233 - 3{"—;‘], 2.2__ + 3{73]]

By a scaling argument, 2 is independent of a and b.

Now we argue by contradiction. Suppose there exist sequences
{xn}C:K. {an,bn]czR and polynomials Qn’ nonnegative on [an,bn}
and satisfying (*) on [an,bn] such that

" U
(**) ux[an.bn] » 0.

and
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b
n
(eax) [ Qtrdiy, (6) < -G (fa 1)
n 2
a
n

By (*), (**) and (***) we see that px (IB(an.bn)) = 0. Since the

n
support of ux is A there are Tne'Iﬂ(an,bn) such that thxne:A.
Therefore, replacing Xn by thxn, Qn(t) by Qn(tnvn), an by

an-r and bn by bn—Tn, we may assume, in addition, that

n
b _-a
n°n
ay < B —p—
and bn~a
bn > B 5

We now proceed to normalize the measures of [an,bn]. Set
= _ 1 >
o, = 3 log pxn{an,bn}

and

Yn gO' x

n

n

where & 1s the Hausdorff dimension of L{l').

We have

Since [ 1is convex cocompact after passing to a subsequence of {yn}

there are p eI such that y: = lim 7y is in A. Note that the
n—>w
“n “n .
sequences 7 vy ., Cht = B¢ and dn: = bne satisfy the hypothe-

ses of Lemma 4. Therefore, passing to further subsequences, we may

assume that linm cn = c > -», limd =4 < ® and ﬁ {{c,d]) = 1.
n—+o n-"%x n Y
- O -
Set Qn(t) = Qn(t-e ). The polynomials Qn(t) satisfy
d b
n n
-~ ~ - 1 ~
[ ey @iy (1) = —2—— [ quvidk, (0)
c n By (lag,b 1) o n
n n n

since the geodesic flow expands the conditional measures on horocycles
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uniformly. Therefore, by (»***)

%

J Qn(t) duyny {t}) tends to 0 as n—o®,
e n
n

Passing to a subsequence, Qn converge to a polynomial Q which is
nonnegative on [c,d] and for which Q{c¢) = Q{d) = 1. Since ¢ and

d are finite the measures J converge to D . Therefore
YnYn b4

b

[aces di(t) = 0.
a

Since Q 2 0 and ﬁy is not atomic this is a contradiction. ™

4. Proof of the Theorem. Part I.

In this section we investigate how a map between horocycle folia-
tions intertwines with the geodesic flows. We refer to the statement

of the Theorem for all notations, and assume in addition that rl and

Fz are two convex cocompact Fuchsian groups in PSL(2,R).

Note that Ml and M2 carry horocycle flows since they are

orientable. By [Ru, Theorem 17] the horocycle foliation of Ml is

ergodic for Hy- Therefore ¢ either preserves the orientations of

a.e. horocycle or reverses them. Conjugating Fz by a =[‘; g) if

necessary we may assume that ¢ preserves the orientation of a.e.
horocycle. By abuse of notation we will denote the horocycle flows on
SM; (as well as on SK®) by h,.

Modifying ¢ on a nullset, if necessary, we may assume that for

all xeA_,

1 is an isometry onto its image (since there are

'
It (x)
no closed horocycles).

Recall the universal constants and p and ¢ introduced in the

1
beginning of Section 3. Let 02 be the constant of Lemma 5§ for Fl.
Denote by R the injectivity radius of M,. PFor every » < 1 set

2
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sz

€ = — min(R,p). Pick O < ¥ < g. By Lusin's theorem there is a

2
801

compact set K with ul-—measure at least 1-¥¢¥ on which ¢

uniformly continuous. Choose @ > 0 such that whenever x and vy

belong to K and d(x,y) < 6 then d(é¢(x),¢(y))} = £, Let n >0 be

2
a number such that for all xeM i=1,2 and all |a} < 7n,

i'
ax,g,(x)) < min (§, o, £8%). By [Ru] the set

T
* lim 1 _
Ay = {xeﬁAl T =TT [rgthgian, (€) > 1 t}
-T

has full pl—measure.

For xeA1 and Jjaf < n, set

. 2
P, (t) = min(d®(h@ (%), hog?(g_ox)). 1}.

If xf—:Al, we have
1) VteRr h¢(x) = ¢ (h.x)
2) VteR h.g ¢(g_ %) = gahte_a«b(g_ax) =
=ge(h _ g x)=
a te a~ -
= g,¢(g_,h.x).

So for teR we have
= 2
Px(t) = min{d (¢ (hx), g, ¢(g JDeX) ) 1}.

Whenever htx and g_'ahtx both belong to K, our choice of

implies
a(d(hyx), g9(g_hex)) < A@(bx), $(g_hx)) +

+ d(é(g_,h.x), gaétg_ahtx}) <

A
N ™
+

and therefore Px(t) < 52.

is

a

From now on, fix xe A: al gaA;. We claim that for T and

1
sufficiently large
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ux((te [—Tl,Tz}[htxe K and g_ahtxe K}) = (1 —St)ux([-Tl,Tz]).

To see this just observe that

yeW'(x) — g_,veW(g_,x)

-5a

has Radon-~Nikodym derivative e < 2.
Therefore we obtain for all sufficiently large T1 and Tz.
T
* W‘;_Tz_ﬂ JPx(t)dux(t) < €2 + 3k < 4c.
..Tl
Using this we are going to show that:
there is To > 0 such that
.- either P_(t) < p for all €>7T,,
or P, (t) <p for all t<-Tg
where 6 = % min(p,R).
Suppose not. Then for all TO >0 there are T1>-T0 and T2>»To

such that property * holds for TI'T and Px(—Tl) >p and

2

Px(T2) >p. )
Let [ai’bI] be the intervals in [_Tl'T2] where Px(t)s P,

For every interval {ai,bi] there exists a polynomial Qi(t) such

that for all te [ai'bi]'
1
EIQi(t) <P (t) = C Q (L)

Let [ci,j'di,j} be the subintervals of {ai.bi} where Qi(t)s p/Cl.

By Lemma 5 the r —average of Qi(t) on each [ci,j’di,j] is
greater than Ca-p/cl. Since c2< 1 the average of Qi on [ai'bi]

is also greater than C -p/Cl, and therefore the average of Px(t)

2
: P
on [ai’bi] is greater than 02 p/Cl.

Thus,
T2
1 T m2
TTeTTyT | P (B8, (€)= Cyep/C]
x 1’72
..'I‘l

since C1 >1. By our choice of ¢ and p this contradicts *, and
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** jis proved.

Since x;<R there are lifts ?1 and ?(2 of ¢{x) and
g #(g_ %) in SH® such that d(h,y,.h,y,) is bounded by o either
as t-—o® or as t-—s-». Thus Yy = hTyl for some T = t(x,a) <;;,

and g ¢(g_,x) )‘P(X)«

= h
T{X,q

As in [Ral, Lemma 3.3] we can now conclude.

Proposition 6. There is peR such that for M -a.e. x and all
teR

h°#°g,(X) = gyoh o9 (x).

Proof of the Theorem., Part II.

By Proposltion 6, replacing ¢ by hTocp, we may and will assume
from now on that ¢ commutes with both geodesic and unstable horo-
cycle flow on a set Q@ of full u,-measure. We will first show that
¢ commutes with the stable horocycle flow kt (ul-a.e.). As the
proof is similar to that of Part I we will only present an outline

of the argument.

Let v, ¢, K, ¥ , 6 and p be as in Part I. For T>0 set

KT=(er|for all t,>T and t,>T
t2
-—TT:?i—?—TT IZK(hsx)d#x(s) >1 -k},
Hy 1’72
....tl

By [Ru, Theorem 17], ul(KT)—-vl as T-—®. Pick T0>0 such that

2
pl(KT y > 3 and set Ko = KT . Set
(0] 0
T
- lim 1 2
K = {xe() % T Ixxo(gsx)ds > 5}
(o]

Since gs is ergodic for Hy: WwWe have yl(K) = 1, Denote by y}s{

the conditional measures on stable horocycles Ws(x) for xe Al'

Then the set
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o - s
{xexlktxex for u. -a.e. t}

has full u | ~measure.

Let 7 be so small that for all |r}{ <7 the holonomy map from

Wu(x) to Wu(er) along the weak stable foliation
u u
hsxew (X}t hq(s,r)(er) — W (er)

has Jacobian between %— and 2 for all s< {-1,1]. Further, we

assume 7 to be so small that for all xe Mi' i=1,2, and all
= .o €
jlri<n, t>0 and se([-1,1], d(gthsx, gthq(s,r)kr(x)) <m1n(-2—,6).

Suppose that Irj <» and both x and er belong to K.

Therefore there is a sequence s, —® such that gg x¢ Ko and
n

gs e K

0" For all s>0 and t€[~es,es] we define
n

- 2
P, o(t) = min(d*(h@(gx), bk __o(k __g.x)). 1).
-re re

As in Part I, one can show that for all sn>€n TO we have

®n
e
. = 1
A: [[ s an] [ Px'sn(t)dpgs L) s 4
u -e ,e s n
gg ¥ - B
n
since gy X and dg er both belong to Ko. On the other hand, let
n S, Sp n -
[a,,b,]c[~e ",e "] be the intervals where P s p’ If neither
i3 x,8, (%)
®n ®n
~e nor e belong to such an interval then it follows as in Part
Czp
I that A = 5 = 8¢. This contradicts the above. Therefore there
[o]
1
exist sets In consisting of at most two intervals containing one of
-e® or e° on which Px s(1:) < ;» In the complement of In the

average of Px s(t) is again greater than 8&. Therefore for at

least one of the components of In' call it Jn' we have
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p (g . J)
X sn n
I"lx(.'llll

By o(Ip)
= gxs Sn s >
kg ol1-e%.%D)

] =

Passing to a subseqguence we may assume that all 9. Jn contain
n

the same endpoint. Since Hy is not atomic there is an interval J

s
contained in all g__ J, . For all s >T, and all tee ™J we
n

have Px s (t) < p. A simple calculation shows that if d(htx,hty) < a
‘“n

on an interval [{-L,L] then there is a constant C(a)} such that

Yy = kslgczheax where €, % C{a}), €, % C(a)/L and £q4 € C(a)/Lz. Let

b be the midpoint of J and let 2L be the length of J. Then

h ok _ge(k _sngsnx) = k‘1g‘2h53h Snd:(ganx)
be -re ree bre

where £y % Cip}, £y < C(p)/ and £q s C(p)fL2e2sn. The usual

s
n
L-e

commutation rule implies that ¢(x) = k_r¢(er) for all |[r] < 7.

Therefore ¢ commutes with the actions of PSL(2,R) on SM1 and

SM2 on a set of full H,-measure. Clearly this allows us to extend

¢ to a PSL{2,R)-equivariant map from SM1 to SMZ‘ Lift ¢ to a
2

map ¢ of the universal cover SH® x PSL{2,R} of SM i=1,2.

i'
Then 3 is equivariant with respect to the action by right
translations by PSL(2,R) on itself.
Let go = 5(1). Then

gofy = $(1:T ) = §(r +1) ¢ T,-¢(1) =T ,:g,.

This proves the Theoren.

6. Proof of the Corollary

As in the statement of the Corollary assume now that r2 is geo-
metrically finite and the Hausdorff dimensions of L(ri), i=1,2,
coincide and are egqual to 6. By [S1,2, Theorem 1] there exists a

unique geometric measure of exponents & on L(Fz). Therefore there
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exists a unlque measure (up to scaling) on r \sz whose conditional
2

measures on horocycles expand (contract) uniformly with exponent &
under gt. This is the Sullivan measure H, on SMZ' Observe that

¢(A1)CZA2, where A2 is the nonwandering set of the geodesic flow on

SM2. Hence, the support of ¢.(y1) is contained in A2. As the

conditional measures of ¢*(u1) expand {contract) uniformly with
exponent &, ¢*(y1) is a constant multiple of by By [S2, Theorem
3] both Hy and H, have finite total mass. Clearly this shows that
the covering ¢: SM, — SM is finite. Therefore T is conjugate

1 2 1

to a subgroup of finite index in rz.
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