Problem Set 2 – due Tuesday January 27

See the course website for policy on collaboration.

Problem 1 Consider the vector space \mathbb{R}^3 with its standard inner product \cdot. Let Vol be the element $e_1 \wedge e_2 \wedge e_3$ in $\bigwedge^3 \mathbb{R}^3$, where (e_1, e_2, e_3) is the standard basis of \mathbb{R}^3. For \vec{u} and \vec{v} in \mathbb{R}^3, show that there is a unique element $c(\vec{u}, \vec{v})$ of \mathbb{R}^3 such that, for all $\vec{w} \in \mathbb{R}^3$, we have

$$\vec{u} \wedge \vec{v} \wedge \vec{w} = (\vec{u} \cdot c(\vec{u}, \vec{v})) \text{Vol}.$$

What is the standard name for the function $c(\vec{u}, \vec{v})$?

Problem 2 Let A be an $m \times n$ matrix, which we also consider as a linear map $\mathbb{R}^n \to \mathbb{R}^m$. Let k be a positive integer. Recall that the rank of A is defined to be the dimension of the image of A. In this problem, we return to a problem from the zeroeth problem set of Fall term, where we showed that $\text{rank}(A) \geq k$ if and only if A has a $k \times k$ submatrix with nonzero determinant.

(a) Show that A has a $k \times k$ matrix with nonzero determinant if and only if $\bigwedge^k A$ is nonzero.

(b) Suppose that $\text{rank}(A) < k$. Show that $\bigwedge^k A = 0$. (Hint: The nice solution uses functoriality.)

(c) Suppose that $\text{rank}(A) \geq k$. Show that $\bigwedge^k A \neq 0$. (Hint: Take k elements of \mathbb{R}^n that have linear independent images under A, and build an element of $\bigwedge^k \mathbb{R}^n$ with nonzero image.)

Problem 3. (a) Let B be a nilpotent $n \times n$ matrix with entries in a field k, meaning that $B^N = 0$ for some positive integer N. Show that $cId_n + B$ is invertible for any nonzero scalar c. (Hint: geometric series.)

(b) Let $r(x)$ be a polynomial with entries in k and $r(0) = 0$. Show that $r(B)$ is nilpotent.

(c) Let $r(x)$ be a polynomial with entries in k and $r(0) \neq 0$. Show that $r(B)$ is invertible.

Problem 4 Recall from class that we defined $C(k, n)$ to be the set of tensors in $\bigwedge^k \mathbb{R}^n$ which are of the form $v_1 \wedge v_2 \wedge \cdots \wedge v_k$ for some $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$; we write e_1, e_2, \ldots, e_n for the standard basis of \mathbb{R}^n. We defined $OG(k, n)$ to be the intersection of $C(k, n)$ with the unit sphere $S^{(k)}(1)$ in $\mathbb{R}^{(k)}$. In this problem, we will check that $OG(k, n)$ is a submanifold of $\bigwedge^k \mathbb{R}^n$.

(a) Suppose that $\omega = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} p_{i_1 i_2 \cdots i_k} e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_k}$ is a point in $C(k, n)$ with $p_{12 \cdots k} = 1$. Show that ω can be written in the form $v_1 \wedge \cdots \wedge v_k$ where v_j is of the form $e_j + \sum_{r=1}^{n-k} A_{jr} e_{k+r}$ for some $k \times (n-k)$ matrix A.

(b) In the notation of part (a), show that the entries of A are uniquely determined by ω.

(c) Give an injective immersion $\tilde{\phi} : \mathbb{R}^{k(n-k)} \to \bigwedge^k \mathbb{R}^n$ whose image is $C(k, n) \cap \{p_{12\cdots k} = 1\}$.

(d) Give an injective immersion $\phi : \mathbb{R}^{k(n-k)} \to \bigwedge^k \mathbb{R}^n$ whose image is $OG(k, n) \cap \{p_{12\cdots k} > 0\}$. (Hint: Modify $\tilde{\phi}$.)

(e) Show that $OG(k, n)$ can be covered by open sets U such that, for each U, the intersection $OG(k, n) \cap U$ is the image of an injective immersion $\mathbb{R}^{k(n-k)} \to OG(k, n) \cap U$. In other words, $OG(k, n)$ is a submanifold of $\bigwedge^k \mathbb{R}^n$, of dimension \mathbb{R}^n.