Problem Set 6 – due Tuesday March 24

See the course website for policy on collaboration.

Problem 1 Let I denote the closed interval $[-1,1]$ in \mathbb{R}. Let X and Y be compact manifolds which can be embedded in \mathbb{R}^N for some N. (I am only embedding them because we have not yet talked about differential forms and Stokes theorem for abstract manifolds.) Let α and β be two smooth maps $X \to Y$. The maps α and β are defined to be homotopic if there is a smooth map $\phi : X \times [-1,1] \to Y$ such that $\phi(x,1) = \alpha(x)$ and $\phi(x,-1) = \beta(x)$.

(a) Show that, if ω is a closed dim X form on Y, and α and β are homotopic, then $\int_X \alpha^* \omega = \int_X \beta^* \omega$.

(b) Let X be the circle S^1 and let Y be the torus $S^1 \times S^1$. Choose a point $p \in S^1$. Let α and β be the maps $\alpha(\theta) = (\theta,p)$ and $\beta(\theta) = (p,\theta)$. Show that α and β are not homotopic.

(c) Let X be the circle S^1 and let Y be $\mathbb{R}^2 \setminus \{(0,0)\}$ Let $\alpha(\theta) = (\cos \theta, \sin \theta)$ and let $\beta(\theta) = (2 + \cos(\theta), \sin(\theta))$. Show that α and β are not homotopic.

(d) Let X be the circle S^1 and let Y be $\mathbb{R}^2 \setminus \{(1,0),(-1,0)\}$ Let $\alpha(\theta) = (1 + \cos \theta, \sin \theta)$ and let $\beta(\theta) = (-1 + \cos \theta, \sin \theta)$. Show that α and β are not homotopic.

Problem 2 Let X be the one dimensional manifold $\mathbb{R} \times \{-1,1\} \subset \mathbb{R}^2$. Define an equivalence relation \sim on X where $(x,1) \sim (x,-1)$ for $x \neq 0$, but $(0,1) \not\sim (0,-1)$. There are no other nontrivial equivalences (of course, every point is equivalent to itself.) Define $Y = X/\sim$. We’ll write $(x,\pm 1)$ for the equivalence class of $(x,\pm 1)$.

(a) Show that, if A is any open subset of Y containing $(0,1)$ and B is any open subset of Y containing $(0,-1)$, then $A \cap B \neq \emptyset$. The term for this is that Y is not Hausdorff.

(b) Show that Y is a one dimensional topological manifold. Recall that this means that, for any $y \in X$, there is an open set W of Y with $W \ni y$, an open subset $P \subset \mathbb{R}$ and a homeomorphism $\alpha : P \to W$.

Define $U \subset Y$ to be the set of points of the form $(x,1)$ for $x \in \mathbb{R}$ and let $V \subset Y$ be the set of points of the form $(x,-1)$.

(c) Show that there do not exist continuous functions f and g on X such that $f + g = 1$ and such that $y \in Y : f(y) \neq 0 \subseteq U$ and $y \in Y : f(y) \neq 0 \subseteq U$. (The bar on top means to take the closure.) In other words, Y does not have partitions of unity.

Let P and Q be the interval $(-1,1) \subset \mathbb{R}$. Define $\alpha : P \to Y$ to be the map $\alpha(x) = (x,1)$ and define $\beta : Q \to Y$ to be the map $\beta(x) = (x,-1)$.

(d) Show that we have smooth transitions between (α, P, U) and (β, Q, V). In other words, Y is a smooth manifold.

Problem 3 We write \mathbb{C} for the complex numbers. The point of this problem is to construct a smooth manifold known as \mathbb{CP}^2. (There is a completely analogous \mathbb{CP}^n for any n.)

Let \mathbb{C}^4 be the two dimensional complex vector space and let $S = \mathbb{C}^2 \setminus \{(0,0,0)\}$. Define an equivalence relation on S by $(x_1,y_1,z_1) \sim (x_2,y_2,z_2)$ if there is a nonzero $c \in \mathbb{C}$ such that $(x_1,y_1,z_1) = c(x_2,y_2,z_2)$. As a topological space, $\mathbb{CP}^2 = S/\sim$.

Define the sets $U = \{(x,y,z) : x \neq 0\}$, $V = \{(x,y,z) : y \neq 0\}$ and $W = \{(x,y,z) : z \neq 0\}$ in S.

(a) Show that $U/\sim, V/\sim$ and W/\sim are open in \mathbb{CP}^2 and $\mathbb{CP}^2 = (U/\sim)\cup (V/\sim)\cup (W/\sim)$.

Define maps $\alpha : \mathbb{C}^2 \to U/\sim$, $\beta : \mathbb{C}^2 \to V/\sim$ and $\gamma : \mathbb{C}^2 \to W/\sim$, sending (s,t) to the equivalence classes of $(1,s,t)$, $(s,1,t), \text{and } (s,t,1)$.

(b) Show that α is a continuous bijection $\mathbb{C}^2 \to U/\sim$ with continuous inverse.

(c) Compute $\alpha^{-1}(U/\sim \cap (V/\sim))$ and $\beta^{-1}(U/\sim \cap (V/\sim))$.

(d) Write down an explicit formula for the map $\beta^{-1} \circ \alpha$ from the open set $\alpha^{-1}(U/\sim \cap (V/\sim))$ to the open set $\beta^{-1}(U/\sim \cap (V/\sim))$.

Congratulations, you have put the structure of a smooth manifold on \mathbb{CP}^2!