The formula for the orthogonal projection

Let V be a subspace of \mathbb{R}^n. To find the matrix of the orthogonal projection onto V, the way we first discussed, takes three steps:

1. Find a basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ for V.
2. Turn the basis \vec{v}_i into an orthonormal basis \vec{u}_i, using the Gram-Schmidt algorithm.
3. Your answer is $P = \sum \vec{u}_i \vec{u}_i^T$. Note that this is an $n \times n$ matrix, we are multiplying a column vector by a row vector instead of the other way around.

It is often better to combine steps (2) and (3). (Note that you still need to find a basis!) Here is the result: Let A be the matrix with columns \vec{v}_i. Then

$$ P = A(A^TA)^{-1}A^T $$

Your textbook states this formula without proof in Section 5.4, so I thought I’d write up the proof. I urge you to also understand the other ways of dealing with orthogonal projection that our book discusses, and not simply memorize the formula.

Example

Let V be the span of the vectors $(1 2 3 4)^T$ and $(5 6 7 8)^T$. These two vectors are linearly independent (since they are not proportional), so

$$ A = \begin{pmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{pmatrix}. $$

Then

$$ A^TA = \begin{pmatrix} 30 & 70 \\ 70 & 174 \end{pmatrix}, \quad (A^TA)^{-1} = \begin{pmatrix} \frac{87}{169} & \frac{-7}{32} \\ \frac{70}{169} & \frac{3}{32} \end{pmatrix}, $$

Note that A^T and A are not square, but the product A^TA is, so $(A^TA)^{-1}$ makes sense.

Then we have

$$ A(A^TA)^{-1}A^T = \begin{pmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{pmatrix} \begin{pmatrix} \frac{87}{169} & \frac{-7}{32} \\ \frac{70}{169} & \frac{3}{32} \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{pmatrix} = \begin{pmatrix} \frac{7}{10} & \frac{2}{10} & \frac{1}{10} & \frac{-1}{10} \\ \frac{2}{5} & \frac{3}{5} & \frac{1}{5} & \frac{-1}{5} \\ \frac{1}{10} & \frac{1}{10} & \frac{3}{10} & \frac{-1}{10} \\ \frac{-1}{5} & \frac{1}{5} & \frac{2}{5} & \frac{7}{10} \end{pmatrix}. $$

You can have fun checking that this is, indeed, the matrix of orthogonal projection onto V.

Why is A^TA invertible?

This formula only makes sense if A^TA is invertible. So let’s prove that it is. Suppose, for the sake of contradiction, that $\vec{c} = (c_1, c_2, \ldots, c_m)$ is a nonzero vector in the kernel of A^TA. Then $A^TA\vec{c} = 0$ and so

$$ 0 = \vec{c}^T A^TA \vec{c} = (A\vec{c})^T(A\vec{c}) = |A\vec{c}|^2. $$

Since the only vector with length 0 is $\vec{0}$, this shows that $A\vec{c} = 0$.

But $A\vec{c} = c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_m\vec{v}_m$ and we assumed that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ was a basis for V, so there are no linear relations between the \vec{v}_i. So we can’t have $c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_m\vec{v}_m = \vec{0}$. This is our contradiction and we deduce that A^TA didn’t have a kernel after all.
Direct proof

Let’s first check that \(P \vec{w} \) is the right thing in two particular cases.

Case 1: \(\vec{w} \) is in \(V \). In this case, \(\vec{w} = A\vec{c} \) for some \(\vec{c} \). Then

\[
P \vec{w} = A(A^T A)^{-1} A^T (A\vec{c}) = A(A^T A)^{-1} (A^T A)\vec{c} = A\vec{c} = \vec{w}
\]

which is what we want.

Case 2: \(\vec{w} \) is in \(V^\perp \). Since \(V = \text{Image}(A) \), we have \(V^\perp = \text{Image}(A)^\perp = \text{Ker}(A^T) \) and we see that \(A^T \vec{w} = 0 \). Then

\[
P \vec{w} = A(A^T A)^{-1} A^T \vec{w} = A(A^T A)^{-1} \vec{0} = \vec{0}
\]

which is, again, what we want.

For a general \(\vec{w} \), write \(\vec{w} = \vec{w}_1 + \vec{w}_2 \) where \(\vec{w}_1 \) is in \(V \) and \(\vec{w}_2 \) is in \(V^\perp \). Then

\[
P \vec{w} = P \vec{w}_1 + P \vec{w}_2 = \vec{w}_1 + \vec{0} = \vec{w}_1
\]

where we used Case 1 to compute \(P \vec{w}_1 \) and Case 2 to compute \(P \vec{w}_2 \). Taking \(\vec{w} \) to \(\vec{w}_1 \) is, indeed, exactly what orthogonal projection is suppose to do.

Proof using orthogonal bases

Our vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m \) are a basis for \(V \), but not an orthonormal basis. However, \(V \) does have an orthonormal basis. Let \(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_m \) be this basis. Let’s write \(Q \) for the matrix whose columns are the \(\vec{u}_i \). The condition that \(\vec{u}_i \) are orthonormal is the same as \(Q^T Q = \text{Id}_m \). Let

\[
\vec{v}_j = \sum_i R_{ij} \vec{u}_i.
\]

We can rewrite this using matrices, \(A = QR \).

I claim that \(R \) is invertible. Notice that \(R \) is square (it’s \(m \times m \)). If \(R \vec{x} = 0 \), then \(A \vec{x} = QR \vec{x} = 0 \). But the columns of \(A \) are linearly independent, so \(A \) is injective, a contradiction. Since \(\text{Rank}(R) = \text{Rank}(R^T) \), this also shows that \(R^T \) is invertible.

Now we plug in:

\[
P = (QR)((QR)^T QR)^{-1}(QR)^T
\]

\[
= QR(R^T Q^T R)^{-1} R^T Q^T
\]

\[
= Q R (R^T R)^{-1} R^T Q^T \quad \text{because } Q^T Q = \text{Id}
\]

\[
= Q R R^{-1} (R^T)^{-1} R^T Q^T \quad \text{we already argued that } R \text{ and } R^T \text{ are invertible}
\]

\[
= QQ^T
\]

As your textbook explains (Theorem 5.3.10), when the columns of \(Q \) are an orthonormal basis of \(V \), then \(QQ^T \) is the matrix of orthogonal projection onto \(V \).

Note that we needed to argue that \(R \) and \(R^T \) were invertible before using the formula \((R^T R)^{-1} = R^{-1} (R^T)^{-1} \). By contrast, \(A \) and \(A^T \) are not invertible (they’re not even square) so it doesn’t make sense to write \((A^T A)^{-1} = A^{-1} (A^T)^{-1} \).