More on transposes, orthogonal complement
Theorem The rank of a matrix equals the rank of its transpose. Recall that $\text{rank}(A) = \dim \text{Image}(A)$.

We proved this before using row and column reduction; let’s give a new proof without coordinates.
Theorem The rank of a matrix equals the rank of its transpose. Recall that \(\text{rank}(A) = \dim \text{Image}(A) \).

We can factor \(F \) as

\[
V \xrightarrow{\text{surjective}} \text{Image}(F) \xrightarrow{\text{injective}} W.
\]
Theorem The rank of a matrix equals the rank of its transpose. Recall that \(\text{rank}(A) = \dim \text{Image}(A) \).

We can factor \(F \) as

\[
V \overset{\text{surjective}}{\longrightarrow} \text{Image}(F) \overset{\text{injective}}{\longrightarrow} W.
\]

So we can factor \(F^* \) as

\[
V^* \overset{\text{injective}}{\longleftarrow} \text{Image}(F)^* \overset{\text{surjective}}{\longleftarrow} W^*.
\]
Theorem The rank of a matrix equals the rank of its transpose. Recall that \(\text{rank}(A) = \dim \text{Image}(A)\).

We can factor \(F\) as

\[V \xrightarrow{\text{surjective}} \text{Image}(F) \xrightarrow{\text{injective}} W. \]

So we can factor \(F^*\) as

\[V^* \xleftarrow{\text{injective}} \text{Image}(F)^* \xleftarrow{\text{surjective}} W^*. \]

But then the image of \(\text{Image}(F)^*\) in \(V^*\) must be \(\text{Image}(F^*)\)! We have an isomorphism \(\text{Image}(F)^* \cong \text{Image}(F^*)\).
Theorem The rank of a matrix equals the rank of its transpose. Recall that \(\text{rank}(A) = \dim \text{Image}(A) \).

We can factor \(F \) as

\[
V \xrightarrow{\text{surjective}} \text{Image}(F) \xrightarrow{\text{injective}} W.
\]

So we can factor \(F^* \) as

\[
V^* \xleftarrow{\text{injective}} \text{Image}(F)^* \xleftarrow{\text{surjective}} W^*.
\]

But then the image of \(\text{Image}(F)^* \) in \(V^* \) must be \(\text{Image}(F^*) \)! We have an isomorphism \(\text{Image}(F)^* \cong \text{Image}(F^*) \).

So \(\text{rank}(F) = \dim \text{Image}(F) = \dim \text{Image}(F)^* = \dim \text{Image}(F^*) = \text{rank}(F^*) \).
Orthogonal complement
We can use the dual to build something like orthogonal complement without working over the field \mathbb{R}. Let V be a vector space and let W be a subspace of V. Then we set W^\perp to be the subspace of V^* defined by

$$W^\perp = \{ v^* \in V^* : v^* \text{ is } 0 \text{ on } W \}.$$

In other words, $W^\perp = \text{Ker}(V^* \to W^*)$. (Your book uses W°.)
We can use the dual to build something like orthogonal complement without working over the field \mathbb{R}. Let V be a vector space and let W be a subspace of V. Then we set W^\perp to be the subspace of V^* defined by

$$W^\perp = \{v^* \in V^* : v^* \text{ is 0 on } W\}.$$

In other words, $W^\perp = \ker(V^* \to W^*)$.

Wake up question: If $\dim V$ is finite, then we have $\dim W^\perp = \dim V - \dim W$.

We can use the dual to build something like orthogonal complement without working over the field \(\mathbb{R}\). Let \(V\) be a vector space and let \(W\) be a subspace of \(V\). Then we set \(W^\perp\) to be the subspace of \(V^*\) defined by

\[
W^\perp = \{ v^* \in V^* : v^* \text{ is 0 on } W \}.
\]

In other words, \(W^\perp = \ker(V^* \to W^*)\).

Wake up question: If \(\dim V\) is finite, then we have \(\dim W^\perp = \dim V - \dim W\).

Proof: Since \(W \to V\) is injective, the map \(V^* \to W^*\) is surjective. By rank-nullity, \(\dim \ker(V^* \to W^*) = \dim V^* - \dim \text{Image}(V^* \to W^*) = \dim V^* - \dim W^* = \dim V - \dim W\). \(\square\)
Time for you to talk!

Problem 1 Let $X \subseteq Y \subseteq V$. Show that $X^\perp \supseteq Y^\perp$ (these are both subspaces of V^*).

Problem 2 Let $W \subset V$ be vector spaces. Show that $(W^\perp)^\perp \supseteq W$.

This one is a bit broken: $(W^\perp)^\perp$ is in V^{**}, not in V. So this only makes sense if we identify V and V^{**}, which only works in finite dimensions, or if we ask that the natural map $V \to V^{**}$ carries W into $(W^\perp)^\perp$, which is true.

Problem 3 Let $W \subset V$ be finite dimensional vector spaces. Show that $(W^\perp)^\perp = W$.

Problem 4 Let X and Y be subspaces of V. Show that $(X + Y)^\perp = X^\perp \cap Y^\perp$. If V is finite dimensional, show also that $(X \cap Y)^\perp = X^\perp + Y^\perp$.

Problem 5 Let V and W be vector spaces and let $A : V \to W$ be a linear transformation. Then $\text{Ker}(A^*) = \text{Im}(A)^\perp$. If V and W are finite dimensional, we also have $\text{Im}(A^*) = \text{Ker}(A)^\perp$.