Problem 1 Let \(G \) be a connected graph with equally many vertices and edges. Show that \(G \) has exactly one cycle.

Problem 2 Let \(G \) be a directed graph on a finite vertex set \(V \).
(a) Suppose that every vertex of \(G \) has out-degree 1. Show that \(G \) has a directed cycle.
(b) Suppose that \(v \in V \) is a vertex of out-degree 0 and every vertex other than \(v \) has out-degree 1. Show that the following are equivalent:
 (i) \(G \), considered as an undirected graph, is connected
 (ii) \(G \), considered as an undirected graph, is a tree
 (iii) \(G \), considered as an undirected graph, has no cycles
 (iv) \(G \), considered as a directed graph, has no directed cycles

Problem 3 Let \(T \) be a tree all of whose vertices have degree either 1 or 3. Such a tree is called \textit{trivalent} and often occur in evolutionary biology, describing how various species have branched apart from each other.

(a) If \(T \) has \(n \) leaves, show that it has \(n - 2 \) vertices of degree 3.
(b) Let \(T \) be a trivalent tree with \(n \geq 4 \). Show that there is some internal vertex which is adjacent to two leaves.

Such a vertex is sometimes called a \textit{cherry}, and many algorithms for phylogenetic reconstruction begin by trying to find the cherries.

Problem 4 Let \(T \) be a tree.
(a) Show that it is possible to color the vertices of \(T \) black and white so that neighboring vertices have opposite colors.
 Let \(b \) and \(w \) be the numbers of black and white vertices.
 (b) If \(b \geq w \), show that \(T \) has a black leaf.
 (c) Let \(\ell \) be the number of leaves of \(T \). Show that \(|b - w| < \ell \) (unless \(T \) is a single vertex).

Problem 5 Consider trivalent trees (defined in Problem 2) whose leaves are numbered 1, 2, \ldots, \(n \). We consider two such trees \(T \) and \(T' \) to be the same if there is an isomorphism \(T \cong T' \) preserving the labels of the leaves. Below, we depict the three trees for \(n = 4 \).

(a) How many such trees are there for \(n = 5, 6 \) and 7? (Don’t write them out!)
(b) Conjecture a formula for the number of such trees with \(n \) leaves.
(c) Prove your guess.

Problem 6 Consider a \((2n + 1) \times (2n + 1)\) checkerboard. Place \(2n^2 + 2n\) dominos on the checker board, leaving one corner uncovered. Show that it is possible to slide the dominos in order to move the hole to any position whose \(x \) and \(y \) coordinates have the same parity as the initial corner. (These positions are marked with red dots in the image.)