Worksheet 13: Unique Factorization Domains (UFDs)

Throughout this worksheet, let \(R \) be an integral domain.

Definition: Let \(r \) be an element of \(R \). We say that \(r \) is **composite** if \(r \) is nonzero and \(r \) can be written as a product of two non-units. We say that \(r \) is **irreducible** if it is neither composite, nor 0, nor a unit.

Thus every element of \(R \) is described by precisely one of the adjectives “zero”, “unit”, “composite”, “irreducible”.

Definition: Let \(p \in R \). We say that \(p \) is **prime** if \(pR \) is a prime ideal and \(p \neq 0 \).

Problem 13.1. Let \(p \) be a non-zero, non-unit. Show that \(p \) is prime if and only if, whenever \(p|ab \), either \(p|a \) or \(p|b \).

Problem 13.2. Show that prime elements are irreducible.

Problem 13.3. Let \(k \) be a field and let \(k[t^2, t^3] \) be the subring of \(k[t] \) generated by \(t^2 \) and \(t^3 \).

1. Check that \(t^2 \) and \(t^3 \) are not prime in \(k[t^2, t^3] \).
2. Show that \(t^2 \) and \(t^3 \) are prime in \(k[t^2, t^3] \).

Problem 13.4. Consider the subring \(\mathbb{Z}[\sqrt{-5}] \) of \(\mathbb{C} \).

1. Show that 2, 3 and \(1 \pm \sqrt{-5} \) are irreducible in \(\mathbb{Z}[\sqrt{-5}] \). Hint: Use the complex absolute value.
2. Show that 2, 3 and \(1 \pm \sqrt{-5} \) are not prime in \(\mathbb{Z}[\sqrt{-5}] \). Hint: \(2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \).

We want to say that factorizations into prime elements are unique, but factorizations into irreducible elements need not be. In order to do this, we need some vocabulary.

Definition: We define two elements, \(p \) and \(q \), of \(R \) to be **associate** if there is a unit \(u \) such that \(p = qu \). We define two factorizations \(p_1 p_2 \cdots p_m \) and \(q_1 q_2 \cdots q_n \) to be **equivalent** if \(m = n \) and there is a permutation \(\sigma \) in \(S_n \) such that \(p_j \) is associate to \(q_{\sigma(j)} \).

Problem 13.5. Show that any non-zero, non-unit element of \(R \) has at most one factorization into prime elements, up to equivalence.

Problem 13.6. Give examples, in the rings \(k[t^2, t^3] \) and \(\mathbb{Z}[\sqrt{-5}] \), of elements with multiple, nonequivalent, factorizations into irreducible elements.

Definition: We’ll make the following nonstandard definition: We’ll say that \(R \) has factorizations if every non-zero, non-unit \(R \) can be written in at least one way as a product of irreducibles.

Problem 13.7. Let \(R \) have factorizations. Show that the following conditions are equivalent:

(a) All irreducible elements are prime.
(b) Factorizations into irreducibles are unique, up to equivalence.
(c) Every nonzero, nonunit, element has a factorization into prime elements.

Definition: An integral domain which has factorizations and in which the equivalent conditions in Problem 13.7 hold, is called a **unique factorization domain**, also known as a UFD.

Problem 13.8. Let \(R \) be a Noetherian integral domain.

1. Let \(r_1, r_2, r_3 \ldots \) be a sequence of elements of \(R \) such that \(r_{j+1} \) divides \(r_j \) for all \(j \). Show that, for \(j \) sufficiently large, \(r_j \) and \(r_{j+1} \) are associates.
2. Show that \(R \) has factorizations.

1 Morally, we should consider the product of the empty set to be 1, so 1 has a factorization into a set of irreducibles, namely the empty set. But trying to get this right would be a notational pain, so we’ll just refuse to consider factorizations of units.