Worksheet 15: The Euclidean Algorithm

To find the greatest common measure of two numbers... (Euclid, The Elements, Book VII, Proposition 2)

Starting with two positive integers x_0 and x_1, the Euclidean algorithm recursively defines two sequences of integers x_0, x_1, x_2, \ldots and a_1, a_2, a_3, \ldots as follows: For $n \geq 2$, we have

$$x_n = x_{n-2} - a_{n-1}x_{n-1}$$

with $0 \leq x_n < x_{n-1}$. The algorithm terminates when $x_n = 0$.

Problem 15.1. Compute the sequences x_n and a_n with $x_0 = 321$ and $x_1 = 123$.

Problem 15.2. Show that $\text{GCD}(x_0, x_1) = \text{GCD}(x_1, x_2) = \cdots = \text{GCD}(x_{n-1}, x_n) = x_{n-1}$, where $x_n = 0$.

Let this common GCD be g.

Problem 15.3. Show that there is an elementary matrix E with $E \begin{bmatrix} x_{n-2} \\ x_{n-1} \end{bmatrix} = \begin{bmatrix} x_n \\ x_{n-1} \end{bmatrix}$. Recall that a 2×2 elementary matrix is one of the form $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ or $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$.

Problem 15.4. Show that there is a product of elementary matrices F, with $F \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} g \\ 0 \end{bmatrix}$. (Hint: Remember Problem Set 1?)

Problem 15.5. Show that there exist sequences b_k and c_k such that $b_kx_k + c_kx_{k+1} = g$ and show how to compute the b's and c's using the a's.

Problem 15.6. Demonstrate that your method works by finding b and c such that $b \cdot 321 + c \cdot 123 = 3$.

¹First recorded by Euclid, a Greek mathematician who lived in roughly 300 BCE.