Most people find the proof of the Smith normal form theorem for Euclidean domains more intuitive than the case of a general PID. When I went to write them out, they actually came out very similar.

Problem 18.1. (Proof of Smith normal form for Euclidean integral domains) Let \(R \) be a Euclidean integral domain with positive norm \(N(\cdot) \). Let \(X \in \text{Mat}_{m \times n}(R) \). If \(X = 0 \), the Smith normal form theorem clearly holds for \(X \), so assume otherwise. Let \(d \) be an element of smallest norm among all nonzero elements occurring as an entry in a matrix \(Y \) with \(Y \sim X \). Let \(Y \) be a matrix with \(Y \sim X \) and \(Y_{11} = d \).

1. Show that \(d \) divides \(Y_{1i} \) and \(Y_{ij} \) for all \(2 \leq i \leq m \) and \(2 \leq j \leq n \).
2. Show that there is a matrix \(Z \sim Y \) with \(Z_{11} = d \) and \(Z_{i1} = Z_{1j} = 0 \) for all \(2 \leq i \leq m \) and \(2 \leq j \leq n \).
3. Show that \(d \) divides \(Z_{ij} \) for all \(2 \leq i \leq m \) and \(2 \leq j \leq n \).
4. Show that \(X \) is \(\sim \)-equivalent to a matrix of the form \(\text{diag}_{\min}(d_1, d_2, \ldots, d_{\min(m,n)}) \) with \(d_1 | d_2 | \cdots | d_{\min(m,n)} \).

Problem 18.2. Consequence of the proof of Smith normal form for Euclidean integral domains: Define a stronger equivalence relation \(\sim_E \) where \(X \sim_E Y \) if \(Y = UXV \) where \(U \) and \(V \) products of elementary matrices.

1. Trace through your proof and check that you have shown, in a Euclidean integral domain, that every matrix is \(\sim_E \)-equivalent to a matrix of the form \(\text{diag}_{\min}(d_1, d_2, \ldots, d_{\min(m,n)}) \) with \(d_1 | d_2 | \cdots | d_{\min(m,n)} \).
2. Let \(R \) be a Euclidean integral domain. Let \(SL_n(R) \) be the group of \(n \times n \) matrices with entries in \(R \) and determinant 1. Show that \(SL_n(R) \) is generated by elementary matrices.

To do the case of a general PID, you’ll need the following old problems:

14.9 Let \(x \) and \(y \in R \). Show that there is a matrix \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \) with entries in \(R \) such that \(ad - bc = 1 \) and \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \text{GCD}(x,y) \\ 0 \end{bmatrix} \).

14.10 Let \(x \) and \(y \) be nonzero elements of \(R \). Show that there are invertible \(2 \times 2 \) matrices \(U \) and \(V \) with \(U \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} V = \begin{bmatrix} \text{GCD}(x,y) & 0 \\ 0 & \text{LCM}(x,y) \end{bmatrix} \).

Here \(\text{LCM}(x,y) = \frac{xy}{\text{GCD}(x,y)}. \)

Problem 18.3.
Let \(R \) be a Noetherian ring (such as a PID) and let \(\mathcal{D} \) be a nonempty subset of \(R \). Show that there is an element \(d \in \mathcal{D} \) which is “minimal with respect to division”: More precisely, show that there is an element such that if \(d' \in \mathcal{D} \) divides \(d \), then \(d \) divides \(d' \) as well.

Problem 18.4. (Proof of Smith normal form for PID’s) Let \(R \) be a PID and let \(X \in \text{Mat}_{m \times n}(R) \). Let \(\mathcal{D} \) be the set of all entries occurring in any matrix \(Y \) with \(Y \sim X \). Let \(d \) be as in Problem 18.3 for \(\mathcal{D} \) and let \(Y \) be a matrix with \(Y \sim X \) and \(Y_{11} = d \).

1. Show that \(d \) divides \(Y_{1i} \) and \(Y_{ij} \) for all \(2 \leq i \leq m \) and \(2 \leq j \leq n \).
2. Show that there is a matrix \(Z \sim Y \) with \(Z_{11} = d \) and \(Z_{i1} = Z_{1j} = 0 \) for all \(2 \leq i \leq m \) and \(2 \leq j \leq n \).
3. Show that \(d \) divides \(Z_{ij} \) for all \(2 \leq i \leq m \) and \(2 \leq j \leq n \).
4. Show that \(X \) is \(\sim \)-equivalent to a matrix of the form \(\text{diag}_{\min}(d_1, d_2, \ldots, d_{\min(m,n)}) \) with \(d_1 | d_2 | \cdots | d_{\min(m,n)} \).