Worksheet 7: Comaximal Ideals

We now introduce the notion of comaximal ideals. As we will see, ideals being comaximal is something like integers being relatively prime.

Definition: Suppose R is a commutative ring. Ideals A, B of R are said to be **comaximal** provided that $A + B = R$.

Problem 7.1. Show that A and B are comaximal if and only if $1 \in A + B$.

Problem 7.2. If m is maximal and I is an ideal, show that either m and I are comaximal, or else $I \subseteq m$.

Problem 7.3. Let R be a commutative ring and let A and B be ideals. Show that the map $R \to R/A \times R/B$, sending r to the ordered pair $(r \mod A, r \mod B)$, is surjective if and only if A and B are comaximal.

Definition: Suppose R is a ring. The **product** of ideals A and B in R is the ideal, denoted AB, consisting of all finite sums $\sum a_i b_i$ with $(a_i, b_i) \in A \times B$. The product of any finite number of ideals is defined similarly.

Problem 7.4. (This one is a little tricky:) Suppose that A and B are comaximal ideals in a commutative ring R. Show that $A \cap B = AB$.

Problem 7.5. Suppose that R is a nonzero commutative ring. Suppose I_1, I_2, I_3, \ldots, I_k are ideals in R that are pairwise comaximal. Show that the ideals I_1 and $I_2 I_3 \cdots I_k$ are comaximal.

We now show that comaximal is a stronger condition than relatively prime, and is the same in \mathbb{Z}.

Problem 7.6. Let R be a commutative ring, let a and b in R, and suppose that aR and bR are comaximal. Show that any g which divides both a and b must be a unit.

Problem 7.7. Show that the ideals $xk[x, y]$ and $yk[x, y]$ are **not** comaximal, although the polynomials x and y are relatively prime in $k[x, y]$.

Problem 7.8. Let a and b be relatively prime integers. Show that the ideals $a\mathbb{Z}$ and $b\mathbb{Z}$ are comaximal.