Classification of finitely generated modules over a PID

Throughout this worksheet, let \(R \) be a PID.

(103) Let \(X \in \text{Mat}_{m \times n}(R) \) and let \((d_1, d_2, \ldots, d_{\min(m,n)})\) be the invariant factors of \(X \).

(a) Show that \(R^m/XR^n \cong \bigoplus R/d_jR \oplus R^{m-\min(m,n)} \).

(b) Show that \(\text{Ker}(X) \cong R^{\#\{j:d_j=0\}+n-\min(m,n)} \).

(104) Let \(S \) be a ring and let \(M \) be a finitely generated \(S \)-module.

(a) Show that there is a surjection \(S^m \twoheadrightarrow M \) for some \(m \).

(b) Suppose that \(S \) is Noetherian (for example, every PID is Noetherian). Show that there is a surjection \(S^n \twoheadrightarrow \text{Ker}(S^m \twoheadrightarrow M) \) for some \(n \).

(c) With hypotheses and assumptions as in the previous part, show that there is an \(m \times n \) matrix \(X \) with \(M \cong S^m/XS^n \).

(105) **Classification of modules over a PID: Elementary divisor form**

Show that every finitely generated \(R \)-module \(M \) is of the form \(\bigoplus R/d_jR \) for some nonunits \(d_1, d_2, \ldots, d_k \) in \(R \) with \(d_1 \mid d_2 \mid \cdots \mid d_k \).

(106) **Classification of modules over a PID: Prime power form**

Show that every finitely generated \(R \)-module \(M \) is of the form \(R^\oplus \bigoplus R/p_j^{e_j}R \) for some nonnegative integer \(r \), some sequence of prime elements \(p_j \) and some sequence of positive integers \(e_j \).

(107) Let \(M \) be a finitely generated \(R \)-module.

(a) Show that the \(d_1, d_2, \ldots, d_k \) in Problem 105 are unique up to multiplication by units.

(b) Show that the \(r, p_j \) and \(e_j \) in Problem 106 are unique up to rearrangement and up to multiplying the \(p_j \) by units.

Hint for both parts: One approach is to study \(M/qM \) for various choices of \(q \).

Let's see what this say for some particular PID's:

(108) Let \(k \) be a field, then \(k \) is also a PID. What have we proved about finitely generated \(k \)-modules?

(109) A \(\mathbb{Z} \)-module is the same thing as an abelian group.

(a) What have we proved about finitely generated abelian groups?

(b) Consider the matrices below as maps \(\mathbb{Z}^n \to \mathbb{Z}^m \). Describe their cokernels:

\[
\begin{bmatrix}
2 & 0 \\
0 & 3
\end{bmatrix}
\quad \begin{bmatrix}
2 & 1 \\
0 & 2
\end{bmatrix}
\quad \begin{bmatrix}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{bmatrix}.
\]