Problem Set 1: (Due Friday September 13)

Please see the course website for policy regarding collaboration and formatting your homework.

1. Suppose R is a ring and $a, b \in R$. Show that, if b is a unit and a divides b on both the left and the right, then a is a unit.

2. Let K be a field and let R be a subring of K. Let S be a nonempty subset of R, closed under multiplication and not containing 0. Let $S^{-1}R$ be the set of elements in K which can be written as $\frac{a}{b}$ with $a \in R$ and $b \in S$. Show that $S^{-1}R$ is a subring of K.

3. Let A be a ring. The center of A is $Z(A) := \{z \in A : az = za \text{ for all } a \in A\}$. Show that $Z(A)$ is a subring of A.

4. What is the cardinality of the following rings?
 (a) $\mathbb{Z}[x]/(6, 2x - 1)$.
 (b) $\mathbb{Z}[x]/(x^2 - 3, 2x + 4)$.

5. Let k be a field. Show that the only ideals of k are (0) and k.

6. Let k be a field.
 (a) Describe all left ideals of in the ring $\text{Mat}_{n \times n}(k)$ of $n \times n$ matrices with entries in k. Hint: Row reduction.
 (b) Show that the only two-sided ideals of $\text{Mat}_{n \times n}(k)$ are (0) and $\text{Mat}_{n \times n}(k)$.

7. Let R be the set of all infinite sequences (x_1, x_2, \ldots) in \mathbb{R} for which $\lim_{n \to \infty} x_n$ exists. We define addition and multiplication on R by $(x_j) + (y_j) = (x_j + y_j)$ and $(x_j)(y_j) = (x_jy_j)$.
 (a) Show that R is a commutative ring.
 (b) Let m be the set of sequences (x_j) for which $\lim_{n \to \infty} x_n = 0$. Show that m is a maximal ideal of R.

8. Suppose k is a field and let $\bar{R} = k[t]$. Show that R-modules are “the same” as k-vector spaces V equipped with a k-linear endomorphism $T: V \to V$. This question can be interpreted in two ways:
 • (for those who don’t know what categories are) Give a bijection between isomorphism classes of R-modules and isomorphism classes of pairs (V, T); this includes defining when (V_1, T_1) and (V_2, T_2) are isomorphic.
 • (for those who know what categories are) Define the category of R-modules and the category of pairs (V, T), and give an equivalence between them.

9. Suppose k is a commutative ring. An k-algebra is an k-module A with an k-bilinear map $A \times A \to A$.
 Let k be a commutative ring and let A be any ring. Give a bijection between ways to consider A as an k-algebra, and ring maps $k \to Z(A)$. (This problem includes defining what “ways to consider A as an k-algebra” means.)

10. Suppose R is a ring. An element $e \in R$ is called idempotent if $e^2 = e$.
 (a) Give an example of an idempotent, other than 0 and 1, in $\text{Mat}_{2 \times 2}(\mathbb{Z})$.
 (b) Give an example of an idempotent, other than 0 and 1, in $\mathbb{Z}/15\mathbb{Z}$.
 (c) Let e be an idempotent of R and let $eRe = \{ere : r \in R\}$. Show that eRe is a ring, with respect to the addition and multiplication operations of R, where $0_{eRe} = 0_R$ and $1_{eRe} = e$.

11. Let R be a ring. For $r \in R$ and $1 \leq i \neq j \leq n$ define the $n \times n$ matrix $E(i, j, r)$ by

 $$E(i, j, r)_{k \ell} = \begin{cases} 1 & \text{if } k = \ell, \\ r & \text{if } k = i \text{ and } j = \ell, \text{ or} \\ 0 & \text{otherwise.} \end{cases}$$

 The matrix $E(i, j, r)$ is known as an elementary matrix.
 (a) Suppose X is an $m \times n$ matrix. What is the effect of right multiplication by $E(i, j, r)$ on X? Suppose Y is an $n \times m$ matrix. What is the effect of left multiplication by $E(i, j, r)$ on Y? What is the inverse of $E(i, j, r)$?
 (b) Show that the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a product of 2×2 elementary matrices.
 (c) Let u be a unit of R. Show that the matrix $\begin{bmatrix} u & 0 \\ 0 & u^{-1} \end{bmatrix}$ is a product of 2×2 elementary matrices.

Additional task: We will use Zorn’s Lemma in this class. Please familiarize yourself with its statement and with how it is used to show that every nonzero ring has a maximal ideal. Good references are pages 907-909 in Dummit and Foote, Keith Conrad’s notes https://kconrad.math.uconn.edu/blurbs/zorn1.pdf and Dan Grayson’s proof at https://faculty.math.illinois.edu/~dan/ShortProofs/Zorn.pdf.