Problem Set 2 (Due Friday September 20)

Please see the course website for policy regarding collaboration and formatting your homework.

(12) In Homework Problem 4, you gave a bijection between isomorphism classes of \(k[t] \) modules and pairs \((V, T) \) with \(V \) a \(k \)-vector space and \(T \) a \(k \)-linear endomorphism.

(a) Let \(M = k[t]/(t^3 - 2k[t]) \). Give an explicit \(3 \times 3 \) matrix for the corresponding \(T \).

(b) Do \((\mathbb{R}^2, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}) \) and \((\mathbb{R}^2, \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}) \) correspond to isomorphic \(\mathbb{R}[t] \) modules or not?

(13) Let \(f(x) = x^n + f_{n-1}x^{n-1} + \cdots + f_1x + f_0 \) be a monic irreducible polynomial with coefficients in \(\mathbb{Z} \). Let \(\theta \) be a root of \(f(x) \) in \(\mathbb{C} \) and let \(\mathbb{Z}[\theta] \) be the subring of \(\mathbb{C} \) generated by \(\theta \).

(a) Show that \(\mathbb{Z}[x]/f(x)\mathbb{Z}[x] \cong \mathbb{Z}[\theta] \).

(b) Show that \(\mathbb{Z}[\theta] \) is a free \(\mathbb{Z} \)-module with basis \(1, \theta, \ldots, \theta^{n-1} \). In other words, show that every element of \(\mathbb{Z}[\theta] \) can be written in the form \(\sum_{j=0}^{n-1} a_j \theta^j \) for \(a_j \in \mathbb{Z} \) in precisely one way.

(c) Let \(R_3 = \mathbb{Z} \left[\frac{1 + \sqrt{-3}}{2} \right] \) and \(R_7 = \mathbb{Z} \left[\frac{1 + \sqrt{-7}}{2} \right] \). Show that \(\frac{R_3}{2R_3} \) is a field with four elements and that \(\frac{R_7}{2R_7} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \).

(14) Let \(R \) be a commutative ring. Let \(S \) be a subset of \(R \) which is closed under multiplication and such that \(sr = 0 \) for \(s \in S \) and \(r \in R \), if \(sr = 0 \) then \(r = 0 \). Define a relation \(\sim \) on \(S \times R \) by \((s, r) \sim (s', r')\) if \(ss' = rr' \).

(a) Show that \(\sim \) is an equivalence relation.

Let \(S^{-1}R \) be the set of equivalence classes for \(\sim \) and write \(s^{-1}r \) for the class of \((s, r) \) in \(S^{-1}R \). Define:

\[
(s^{-1}r_1 + s^{-1}r_2) = (s_1s_2)^{-1}(s_1r_1 + s_1r_2) \quad (s^{-1}r_1)(s^{-1}r_2) = (s_1s_2)^{-1}(r_1r_2).
\]

(b) Show that these operations are well-defined maps \(S^{-1}R \times S^{-1}R \to S^{-1}R \).

(c) Show that \((S^{-1}R, +, \times)\) is a commutative ring.

If \(R \) is an integral domain, and \(S = R \setminus \{0\} \), then \(S^{-1}R \) is called the field of fractions of \(R \), and denoted \(\text{Frac}(R) \).

(15) Let \(R \) be a commutative ring. \(R \) is called local if \(R \) has precisely one maximal ideal. Show that a ring \(A \) is local if and only if the set of non-units in \(A \) forms an ideal of \(A \).

(16) For two elements \(u \) and \(v \) in a ring \(R \), will write \(uRv \) for \(\{ uv : r \in R \} \). Let \(e \) be idempotent in \(R \); recall that this means \(e^2 = e \). Recall that an element \(z \) of \(R \) is called central if \(zr = rz \) for all \(r \in R \).

(a) Show that \(1 - e \) is idempotent.

(b) Show that, as abelian groups under the operation \(+_R \), we have

\[
R = eRe \oplus (1-e)Re \oplus (1-e)R(1-e).
\]

(c) Suppose that \(e \) is a central idempotent. Show that \(R \cong eRe \times (1-e)R(1-e) \) as rings.

(d) Suppose that \(e_1, e_2, \ldots, e_n \) are central idempotents of \(R \), obeying \(\sum e_j = 1 \) and \(e_i e_j = 0 \) for \(i \neq j \). Show that \(R \cong \prod e_jR_j \) as rings.

A set of idempotents \(\{e_1, e_2, \ldots, e_n\} \) as in part (16d) is called an orthogonal idempotent decomposition.

(e) Let \(\pi_1, \pi_2, \ldots, \pi_k \) be central idempotents of \(R \). Let \(\{e_1, e_2, \ldots, e_{2k}\} \) be the set of all products \(\prod q_j \) with each \(q_j \) is either \(\pi_j \) or \(1 - \pi_j \). Show that \(\{e_1, e_2, \ldots, e_{2k}\} \) is an orthogonal idempotent decomposition.

(17) This problem displays standard applications of the Chinese Remainder Theorem over \(\mathbb{Z} \).

(a) Let \(n \) be a positive integer with prime factorization \(n = \prod p_j^{e_j} \). Give a formula for the number of ordered pairs \((a, b) \in \{0, 1, 2, \ldots, n - 1\}^2 \) such that \(\text{GCD}(a, b, n) = 1 \).

(b) An integer \(n \) is called squarefree if it is not divisible by \(k^2 \) for any \(k > 1 \). Show that there is some integer \(N \) such that \(N, N + 1, \ldots, N + 2019 \) are all not squarefree.

(18) Let \(R \) be a commutative ring, let \(a_1, a_2, \ldots, a_n \) be elements of \(R \) such that \((a_1, \ldots, a_n) = R \). Let \(M \) be a left \(R \)-module such that \(a_i a_j M = 0 \) for \(i \neq j \). Show that

\[
M = a_1 M \oplus a_2 M \oplus \cdots \oplus a_n M.
\]

(19) Let \(R \) be the ring of integer quaternions: \(R \) is a free \(Z \)-module with basis \(i, j, k, \) and multiplication \(i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i \) and \(ki = -ik = j \). Let \(p \) be an odd positive prime integer.

(a) Show that there are integers \(u \) and \(v \) with \(u^2 + v^2 + 1 \equiv 0 \mod p \). (Hint: Pigeonhole principle.)

(b) Show that there is a well-defined map of rings \(R/pR \to \text{Mat}_{2 \times 2}(\mathbb{Z}/p\mathbb{Z}) \) with \(i \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \) and \(j \mapsto \begin{bmatrix} u & v \\ -v & -u \end{bmatrix} \).

(c) Show that the map in (19b) is an isomorphism. (Hint: If you haven’t used that \(p \) is odd, your proof is broken.)

(d) Show that \(R \) has a left ideal \(J \) with \(|R/J| = p^2 \).