Problem Set 5 (Due Friday, October 11)

(39) These are the problems carried over from the previous problem set.
 (a) In the ring \(\mathbb{Z}[i] \), use the Euclidean algorithm to find the GCD \(g_2 \) of \(1 + 13i \) and 85. Find Gaussian integers \(x \) and \(y \) such that \((1 + 13i)x + 85y = g_2 \).
 (b) In the ring \(\mathbb{Q}[i] \), use the Euclidean algorithm to find the GCD \(g_3 \) of \(t^3 + t \) and \(t^4 - 1 \). Find polynomials \(x(t) \) and \(y(t) \) such that \((t^3 + t)x(t) + (t^4 - 1)y(t) = g_3 \).

(40) (a) Use the Euclidean algorithm to find polynomials \(f(t) \) and \(g(t) \) in \(\mathbb{Q}[t] \) such that
 \[f(t)(3t^2 - 3t - 1) + g(t)(t^3 - 2) = 1. \]
 (b) Find rational numbers \(a, b, c \) such that
 \[(3\sqrt[3]{4} - 3\sqrt[3]{2} - 1)^{-1} = a\sqrt[3]{4} + b\sqrt[3]{2} + c. \]

 Now you know how to rationalize denominators for algebraic numbers of degree greater than 2!

(41) Let \(R \) be an integral domain and let \(I \) be a nonzero ideal of \(R \). Cancelled, because problem was done in class.
 (a) Draw arrows indicating which implications exist between the following concepts. You need not provide proofs or counterexamples:
 \[\begin{array}{c|c}
 \text{I is prime} & \text{I is maximal} \\
 \text{I is of the form \{f\} for \(f \) irreducible} & \text{I is of the form \{f\} for \(f \) prime} \\
 \end{array} \]
 (b) How would your answers change if we assume that \(R \) is a UFD?
 (c) How would your answers change if we assume that \(R \) is a PID?

(42) Let \(R \) be a commutative ring and \(x \) an element in \(R \). Let \(S = \{x^k : k \in \mathbb{Z}_{\geq 0}\} \subseteq R \).
 (a) Show that \(x \) is nilpotent if and only if \(S^{-1}R \) is the 0 ring.
 (b) If \(x \) is not nilpotent, show that there is some prime ideal of \(R \) not containing \(x \). Hint: Look at Problem 34.

(43) Let \(k \) be a field, \(f(t) \) a nonzero polynomial with coefficients in \(k \) and \(a \) an element of \(k \).
 (a) Show that \(t - a \) divides \(f(t) \) if and only if \(f(a) = 0 \).
 (b) Show that \(f(t) \) has at most \(\deg(f) \) roots in \(k \).
 (c) Suppose that the characteristic of \(k \) is not 2 and \(c \) is a nonzero element of \(k \). Show that \(c \) has either 0 or 2 square roots in \(k \).

(44) Let \(L \) be the additive subgroup of \(\mathbb{Z}^2 \) generated by \([\frac{5}{1}] \) and \([\frac{7}{1}] \). Show that there is a unique subgroup \(M \) with \(L \subset M \subset \mathbb{Z}^2 \) and \(|\mathbb{Z}^2/M| = 9 \). Give generators of \(M \).

(45) Let \(R \) be a UFD in which every nonzero prime ideal is maximal. In this problem we will show that \(R \) is a PID.
 (a) Let \(p_1 \) and \(p_2 \) be prime elements of \(R \) which generate distinct ideals. Show that \((p_1) \) and \((p_2) \) are comaximal.
 (b) Let \(f_1 \) and \(f_2 \) be elements of \(R \) with \(\gcd(f_1, f_2) = 1 \). Show that \((f_1) \) and \((f_2) \) are comaximal.
 (c) Let \(f_1 \) and \(f_2 \) be elements of \(R \) with \(\gcd(f_1, f_2) = g \). Show that \((f_1, f_2) = (g) \).
 (d) Let \(f_1, f_2, \ldots, f_N \) be elements of \(R \) with \(\gcd(f_1, f_2, \ldots, f_N) = g \). Show that \((f_1, f_2, \ldots, f_N) = (g) \).
 (e) Let \(I \) be an ideal of \(R \) with \(\gcd(I) = g \). Show that \(I = (g) \).

(46) This problem deals with various quadratic subrings of \(\mathbb{C} \) and shows how to deal with rings that are “not quite Euclidean”. Throughout, \(N(a + b\sqrt{-D}) \) denotes \(a^2 + Db^2 \), for \(D \in \mathbb{Z}_{>0} \) and \(a, b \in \mathbb{Q} \).
 (a) Let \(D \) be in \(\{1, 2, 3, 4, 5, 6\} \) and let \(a \) and \(b \in \mathbb{Z}[\sqrt{-D}] \) with \(b \neq 0 \). Show that, either, there are \(q \) and \(r \in \mathbb{Z}[\sqrt{-D}] \) with \(a = bq + r \) and \(N(r) < N(b) \), or else there are \(q \) and \(r \in \mathbb{Z}[\sqrt{-D}] \) with \(2a = bq + r \) and \(N(r) < N(b) \). Show that the same conclusion holds if \(a \) and \(b \) are in \(\mathbb{Z} \left[\frac{1+\sqrt{-E}}{2} \right] \) with \(E \in \{3, 7, 11, 15, 19, 23\} \). Hint: First prove a modified version of worksheet problem (69.)
 (b) Let \(R \) be \(\mathbb{Z}[\sqrt{-D}] \) or \(\mathbb{Z} \left[\frac{1+\sqrt{-E}}{2} \right] \) with \(D \) or \(E \) as above and let \(I \) be an ideal of \(R \). Show that either \(I \) is principal, or else there is some \(f \in R \) with \(fR \subset I \subset (f/2)R \). Here \((f/2)R \) may be a subset of \(\mathbb{C} \) not contained in \(R \).
 (c) We define two ideals \(I \) and \(J \) of \(R \) to be equivalent if there is some \(c \in \text{Frac}(R) \), \(c \neq 0 \), such that \(cI = J \).
 Describe all equivalence classes of ideals in \(\mathbb{Z}[\sqrt{-4}], \mathbb{Z}[\sqrt{-5}] \) and \(\mathbb{Z} \left[\frac{1+\sqrt{-19}}{2} \right] \).

This problem is an instance of the Minkowski bound. Minkowski showed that, given any number ring \(R \), there is a positive integer \(K \) such that, for every ideal \(I \) of \(R \), there is an element \(f \in I \) with \(|fR/I| \leq K \).