Problem Set 7: Due November 3

Problem 1. Remember to go to plan an hour to go to Gradescope and do Practice QR Exam 7.

Problem 2. Please write up proofs of the following class problems: 17.5, and either 18.1 or 18.4.

Problem 3. (1) Let \(A = \begin{bmatrix} 2 & 2 \\ 2 & 6 \end{bmatrix} \). Write \(A \) in Smith normal form.

(2) Let \(B = \begin{bmatrix} 2 & 4 & 10 \\ 1 & 3 & 7 \\ 1 & 1 & 15 \end{bmatrix} \). If we were to write \(B \) in Smith Normal form as \(UDV \), what would \(D \) be? (You need not find \(U \) and \(V \).)

Problem 4. (1) Use the Euclidean algorithm to find polynomials \(f(t) \) and \(g(t) \) in \(\mathbb{Q}[t] \) with
\[
f(t)(3t^2 - 3t - 1) + g(t)(t^3 - 2) = 1.
\]

(2) Find rational numbers \(a, b, c \) such that
\[
(3\sqrt{4} - 3\sqrt{2} - 1)^{-1} = a\sqrt{4} + b\sqrt{2} + c.
\]
Now you can rationalize denominators for algebraic numbers of degree greater than 2!

Problem 5. Let \(R \) be an integral domain and let \(I \) be a nonzero ideal of \(R \).

(1) Draw arrows indicating which implications exist between the following concepts. You need not provide proofs or counterexamples:

<table>
<thead>
<tr>
<th>(I) is prime</th>
<th>(I) is maximal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I) is of the form ((f)) for (f) irreducible</td>
<td>(I) is of the form ((f)) for (f) prime</td>
</tr>
</tbody>
</table>

(2) How would your answers change if we assume that \(R \) is a UFD?

(3) How would your answers change if we assume that \(R \) is a PID?

Problem 6. Let \(R \) be a commutative ring and let \(A \) be an \(n \times n \) matrix with entries in \(R \). The point of this problem is to prove that the following are equivalent:

(a) \(\det A \) is a unit of \(R \).

(b) There is an \(n \times n \) matrix \(B \) with \(AB = \text{Id}_n \).

(c) There is an \(n \times n \) matrix \(C \) with \(CA = \text{Id}_n \).

For ease of grading, break up your proof as follows:

(1) Show that (b) or (c) implies (a).

(2) Show that (a) implies (b) and (c). Hint: Look up the adjugate matrix.

(3) Show that, if (b) and (c) hold, then \(B = C \).

Problem 7. The following problem gives a criterion for a ring to be a PID which is similar to, but more general, than being Euclidean. Let \(R \) be an integral domain and let \(N(\) \) be a positive norm on \(R \). Let \(P \) be a subset of \(R \) such that, for all \(a \) and \(b \in R \) with \(b \neq 0 \), there are \(p \in P \) and \(q \) and \(r \in R \) such that \(pa = qb + r \) and \(N(r) < N(b) \).

Let \(J \) be a nonzero ideal of \(R \) and let \(b \) be a nonzero element of \(J \) of minimal norm.

(1) Show that, for every \(a \in J \), there is some \(p \in P \) with \(pa \in bR \).

(2) Now suppose that \(R \) is Noetherian. Show that there are distinct elements \(p_1, p_2, \ldots, p_k \) of \(R \) with \(\prod p_i \mid J \subseteq bR \).

(3) Suppose that \(R \) is Noetherian and that \(pR \) is maximal for all \(p \in P \). Show that \(J \) is principal. You may use Problem 9 from Problem Set 6 even if you haven’t solved it.