Problem Set 9 (Due Friday, November 22)

(67) Let \(k \) be a field, let \(V \) be an \(n \)-dimensional \(k \)-vector space and let \(\alpha : V \to V \) be a diagonalizable map with eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \), each of multiplicity 1. Compute the eigenvalues of \(\alpha \otimes \alpha \).

(68) Recall the definition of the Jordan block \(J_n(\lambda) \). Compute the Jordan canonical form of \(J_2(0) \otimes J_3(0) \) as a map from \(\mathbb{R}^2 \otimes \mathbb{R}^3 \) to itself.

(69) Let \(k \) be a field and let \(V \) and \(W \) be vector spaces with bases \(e_1, e_2, \ldots, e_m \) and \(f_1, f_2, \ldots, f_n \). Let \(\tau = \sum t_{ij} e_i \otimes f_j \) be an element of \(V \otimes W \). Show that we can write \(\tau \) in the form \(v_1 \otimes w_1 + v_2 \otimes w_2 + \cdots + v_r \otimes w_r \) if and only if the matrix \([t_{ij}] \) has rank \(\leq r \).

(70) Let \(k \) be a commutative ring. Let \(R \) be a unital associative \(k \)-algebra and let \(M \) be a \(k \)-module. Construct a “natural” left \(R \)-module structure on \(R \otimes_k M \).

(71) Let \(R \) be a commutative ring and let \(S \) be a subset of \(R \), containing 1 and closed under multiplication. Let \(M \) be an \(R \)-module. Define \(S^{-1}M \) to consist of formal symbols \(s^{-1}m \) with \(s \in S \) and \(m \in M \), modulo the relation that \(s_1^{-1}m_1 \equiv s_2^{-1}m_2 \) if there is some \(s_3 \in S \) such that \(s_2s_3m_1 = s_1s_3m_2 \). You may assume that this is an equivalence relation. We make \(S^{-1}M \) into an \(S^{-1}R \)-module by defining \(s_1^{-1}m_1 + s_2^{-1}m_2 = (s_1s_2)^{-1}(s_2m_1 + s_1m_2) \) and \((s_1r)(s_2^{-1}m) = (s_1s_2)^{-1}(rm) \). You may assume that this is well defined or that it makes \(S^{-1}M \) into an \(S^{-1}R \)-module.

(a) Show that \(S^{-1}M \cong S^{-1}R \otimes_R M \). Prove this isomorphism at least as \(R \)-modules, and ideally as \(S^{-1}R \)-modules in the sense of Problem 70.

(b) Give an example of a triple \((R, S, M)\) where \(R \) is an integral domain and the map \(m \mapsto 1^{-1}m \) from \(M \) to \(S^{-1}M \) is not injective.

(c) Suppose that \(N \) is an \(R \)-module and \(M \) is an \(R \)-submodule of \(N \). Show that the natural map \(S^{-1}M \to S^{-1}N \) is injective.

(72) We did this problem in class, but it was sketchy enough that I think it is worthwhile to make you redo it. Let \(R \) be a PID. Let \(M \) be an \(R \)-module with \(M \cong \bigoplus R/p_j^{e_j} \oplus R^{m \cdot n} \) for each \(p_j \) is prime and \(e_j \in \mathbb{Z}_{>0} \).

(a) Let \(\pi \) be a prime element of \(R \) and let \(k \) be the field \(R/\pi R \). Compute the dimension of \(\pi^k M/\pi^{k+1}M \) as a \(k \)-vector space.

(b) Show that \(\bigoplus R/p_j^{e_j} \oplus R^{m \cdot n} \cong \bigoplus R/q_j^{f_j} \oplus R^{n \cdot s} \) where the \(q_j \) are prime elements and the \(f_j \) are positive integer exponents. Show that \(r = s \) and that there is some permutation \(\sigma \) and some list of units \(u_j \) such that \(q_j = u_j p_{\sigma(j)} \) and \(f_j e_{\sigma(j)} \).

(73) Let’s prove that a real symmetric matrix is diagonalizable! In this problem, you may assume that the irreducible polynomials in \(\mathbb{R}[x] \) are (1) the linear polynomials and (2) the quadratics \(ax^2 + bx + c \) with \(b^2 - 4ac < 0 \).

(a) Let \(X \) be an \(n \times n \) real matrix and suppose that \(X \) is not diagonalizable. Prove that there is a two dimensional subspace \(V \) of \(\mathbb{R}^n \) such that \(X \) takes \(V \) to itself by a matrix of either the form \(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \) or \(\begin{bmatrix} 0 & -c \\ 1 & 2\lambda \end{bmatrix} \) with \(b^2 < 4c \).

(b) Show that \(\begin{bmatrix} \lambda & 0 \\ 1 & \lambda \end{bmatrix} \) is similar to \(\begin{bmatrix} 0 & -c^2 \\ 1 & 2\lambda \end{bmatrix} \). Deduce that we may modify the conclusion of the previous part to say that there is a two dimensional subspace \(V \) of \(\mathbb{R}^n \) such that \(X \) takes \(V \) to itself by a matrix of the form \(\begin{bmatrix} 0 & -c \\ 1 & -b \end{bmatrix} \) with \(b^2 \leq 4c \).

(c) Now suppose that \(X \) is symmetric. Let \(\cdot \) be the ordinary dot product on \(\mathbb{R}^n \). Show that, for any \(v \) and \(w \) in \(\mathbb{R}^n \), we have \((Xv) \cdot w = v \cdot (Xw) \).

(d) Now suppose that \(X \) is symmetric and non-diagonalizable. Let \(v, w \) be a basis of \(V \) in which \(X \) acts by the matrix \(\begin{bmatrix} 0 & -c \\ 1 & -b \end{bmatrix} \) with \(b^2 \leq 4c \). Show that \(w \cdot w + b(v \cdot w) + c(v \cdot v) = 0 \).

(e) Deduce a contradiction.

(74) This problem is a follow up to Problems 64 and 65. You may use the results from those problems without proof. Let \(k \) be an algebraically closed field and let \(X \) be an \(n \times n \) matrix with entries in \(k \). In Problem 65 you constructed a diagonalizable matrix \(D \) and a nilpotent matrix \(N \) such that \(X = D + N \). Now, suppose we had a second decomposition \(X = D_2 + N_2 \) with \(D_2N_2 = N_2D_2 \) such that \(D_2 \) is diagonalizable and \(N_2 \) is nilpotent.

(f) Show that \(D_2X = XD_2 \) and \(N_2X = XN_2 \). Show that \(D_2D = DDX_2, D_2N = NDX_2, N_2D = DNX_2 \) and \(N_2N = N_2N_2 \).

(g) Show that \(D - D_2 \) is diagonalizable. Hint: Look at Problem 64.

(h) Show that \(N - N_2 \) is nilpotent.

(i) Show that \(D - D_2 = N - N_2 = 0 \).