Prime and Maximal Ideals in Commutative Rings

Vocabulary: prime, maximal, zero divisor

A ring which can be written in the form R/I is called a *quotient ring* of R.

Definition. Suppose R is a commutative ring. An ideal P of R is called prime if,

- for all a and b in R, if $ab \in P$ then $a \in P$ or $b \in P$.
- The ideal P is not all of R.

a) We will discuss prime and maximal ideals in non-commutative rings later.

b) This second condition may seem *ad hoc*; it is a good idea for the same reason that we should define 1 not to be a prime number.

(26) An element a of a commutative ring S is called a zero divisor if there is some $x \neq 0$ in S for which $ax = 0$. Let R be a commutative ring and let I be an ideal of R. Show that I is prime if and only if R/I has no nonzero zero divisors, but does have some nonzero element.

(27) What are the prime ideals in \mathbb{Z}? You may assume uniqueness of prime factorization for this question.\(^1\)

Definition. Suppose R is a commutative ring. An ideal m of R is called maximal if,

- for all a in R, if $a \notin m$ then there is some $b \in R$ such that $ab \equiv 1 \pmod{m}$.
- The ideal m is not all of R.

(28) Let R be a commutative ring and let I be an ideal of R. Show that I is maximal and only if R/I is a field.

(29) Show that a maximal ideal is prime.

(30) Show that an ideal $I \subset R$ is maximal if and only there does not exist an ideal J with $I \subset J \subset R$.

Problem (30) is the motivation for the word “maximal”. Using Zorn’s lemma, and Problem (30), it is easy to show that every ideal in a nonzero commutative ring is contained in a maximal ideal.

(31) Let $R = \mathbb{R}[x, y]$. Show that yR is prime but not maximal.

(32) What are the maximal ideals of \mathbb{Z}?

\(^1\) In a week or so, we will discuss unique factorization in commutative rings in general. At that point, we will prove it for \mathbb{Z}. The careful student can check that there is no circularity; the problems where I permit you to use it now will not feed into our proof then.