Problem 10.1. This is a lemma that will be useful in the future: Let \(k \) be an infinite field.

1. Let \(f(x_1, \ldots, x_n) \in k[x_1, \ldots, x_n] \) and suppose that \(f(\theta_1, \ldots, \theta_n) = 0 \) for all \((\theta_1, \ldots, \theta_n) \in k^n\). Show that \(f \) is the zero polynomial. (Hint: Induct on \(n \).)
2. Let \(H_1, H_2, \ldots, H_N \) be a list of finitely many proper \(k \)-vector subspaces \(H_j \subseteq k^n \). Show that \(\bigcup H_j \neq k^n \).

Problem 10.2. Let \(p \) be prime. Let \(f(x) \in \mathbb{Q}[x] \) be an irreducible polynomial of degree \(p \) that has 2 complex roots and \(p - 2 \) real roots. Let \(L \) be the splitting field of \(f \) over \(\mathbb{Q} \). Show that \(\text{Gal}(L/\mathbb{Q}) = S_p \). (Hint: Look at Problem 9.1.)

Problem 10.3. Let \(L = \mathbb{Q}(\sqrt[44]{3}) \).

1. Show that \(L/\mathbb{Q} \) is Galois. (Hint: recall that the primitive sixth roots of unity are \(\frac{1 \pm \sqrt{-3}}{2} \).)
2. Compute \(\text{Gal}(L/\mathbb{Q}) \).

Problem 10.4. Consider the polynomial \(f(x) = x^{44} - 1 \) in \(\mathbb{F}_3[x] \).

1. Show that \(f(x) \) splits in \(\mathbb{F}_{3^{10}} \).
2. How many roots does \(f(x) \) have in each of the fields \(\mathbb{F}_3, \mathbb{F}_{3^2} \) and \(\mathbb{F}_{3^5} \)?
3. If we factor \(f(x) \) into irreducible factors over \(\mathbb{F}_3 \), how many factors of degree 10 will there be?

Problem 10.5. Let \(\zeta \) be a primitive \(n \)-th root of unity and let \(\Phi_n(x) = \prod_{m \in (\mathbb{Z}/m\mathbb{Z})^\times} (x - \zeta^m) \), which is known as the \(n \)-th cyclotomic polynomial. Let \(L = \mathbb{Q}(\zeta) \).

1. Show that the coefficients of \(f \) are fixed by \(\text{Gal}(L/\mathbb{Q}) \) and deduce\(^1\) that \(\Phi_n(x) \in \mathbb{Q}[x] \).
2. Look at Problem 6.7 and deduce that \(\Phi_n(x) \in \mathbb{Z}[x] \).

Problem 10.6. Let \(p \) be a prime number and let \(\zeta_p \) be a primitive \(p \)-th root of unity. Let
\[
\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \cdots + x + 1.
\]

1. Show that \(\Phi_p(x) \) is the minimal polynomial of \(\zeta_p \) over \(\mathbb{Q} \). Hint: You’ll want to show that \(\Phi_p(x) \) is irreducible; the usual trick is to put \(x = y + 1 \) and use Eisenstein’s irreducibility criterion.
2. Show that \(\text{Aut}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^\times \).

Problem 10.7. Let \(R \) be a commutative ring and \(M \) an \(A \)-module. A \textit{derivation from} \(R \to M \) is a map \(D : R \to M \) obeying \(D(f + g) = D(f) + D(g) \) and \(D(fg) = fD(g) + gD(f) \). So \(f(x) \mapsto f'(x) \) is a derivation \(k[x] \to k[x] \).
Let \(k \) be a field and let \(d : k \to k \) be a derivation. Let \(a \in k[y] \). Show that there is a unique derivation \(D : k[y] \to k[y] \) which restricts to \(d \) on \(k \) and has \(D(y) = a \).

Problem 10.8. Let \(K \) be a field of characteristic \(p \) and let \(L/K \) be a Galois extension with Galois group the cyclic group of order \(p \). We write \(g \) for a generator of \(\text{Gal}(L/K) \). In this problem, we consider \(g \) as a \(K \)-linear map from \(L \to L \).

1. Show that the characteristic polynomial of \(g \) is \((T - 1)^p\).
2. Show that the Jordan form of \(g \) consists of a single \(p \times p \) Jordan block, with 1’s on the diagonal.
3. Show that there is an element \(\alpha \) of \(L \) with \(g(\alpha) = \alpha + 1 \).
4. Putting \(\beta = \alpha^p - \alpha \), show that \(\beta \in K \) and show that \(L \cong K[x]/(x^p - x - \beta) \).

You have now proved that any extension \(L/K \) as in the hypotheses of this problem is of the form \(K[x]/(x^p - x - \beta) \) for some \(\beta \in K \). This is the \textit{Artin-Schreier theorem}.

\(^1\)There are other ways to show this, but I’d like you to work through this route because it is an important method that applies to many other examples.