17. Degrees of Field Extensions, and Constructible Numbers

Definition: Let L be a field and K a subfield. The **degree of L over K**, written $[L : K]$, is the dimension of L as a K-vector space.

Problem 17.1. Let $K \subseteq L \subseteq M$ be three fields with $[L : K]$ and $[M : L] < \infty$. Show that $[M : K] = [M : L][L : K]$.

Problem 17.2. Let $k \subseteq K$ be a field extension with $[K : k] < \infty$. Let $\theta \in K$ and let $m(x)$ be the minimal polynomial of θ over k. Show that $\deg m(x)$ divides $[K : k]$.

We illustrate these results with an extremely classical application. A real number $\theta \in \mathbb{R}$ is called **constructible** if it can be written in terms of rational numbers using the operations $+, -, \times, \div$ and $\sqrt{\cdot}$. Classically, these numbers were studied because the distance between any two points constructed with straightedge and compass is constructible; now we can motivate them by saying they are the numbers which can be computed exactly with a four function calculator.

![Two ancient mathematical tools](image)

Figure: Two ancient mathematical tools

Problem 17.3. Suppose we compute a sequence of real numbers $\theta_1, \theta_2, \theta_3, \ldots, \theta_N$ where each θ_k is either

- a rational number,
- of one of the forms $\theta_i + \theta_j, \theta_i - \theta_j, \theta_i \theta_j$ or θ_i / θ_j for some $i, j < k$ or
- of the form $\sqrt{\theta_j}$ for some $j < k$.

Show that $[\mathbb{Q}[\theta_1, \theta_2, \ldots, \theta_N] : \mathbb{Q}]$ is a power of 2.

Problem 17.4. Let θ be a constructible real number and let $m(x)$ be its minimal polynomial over \mathbb{Q}. Show that $\deg m(x)$ is a power of 2.

Problem 17.5. *(The impossibility of doubling the cube).* Show that $\sqrt[3]{2}$ is not constructible.

Problem 17.6. *(The impossibility of trisecting the angle)* It is well known that a 60° angle is constructible with straightedge and compass. Show, however, that $\cos 20^\circ$ is not constructible. Hint:

$$4 \cos^3 20^\circ - 3 \cos 20^\circ = \cos 60^\circ = \frac{1}{2}.$$