18. DEGREES OF FIELD EXTENSIONS, AND CONSTRUCTIBLE NUMBERS

Definition: Let \(L \) be a field and \(K \) a subfield. The **degree of \(L \) over \(K \)**, written \([L : K]\), is the dimension of \(L \) as a \(K \)-vector space.

Problem 18.1. Let \(K \subseteq L \subseteq M \) be three fields with \([L : K]\) and \([M : L] < \infty\). Show that \([M : K] = [M : L][L : K]\).

Problem 18.2. Let \(k \subseteq K \) be a field extension with \([K : k] < \infty\). Let \(\theta \in K \) and let \(m(x) \) be the minimal polynomial of \(\theta \) over \(k \). Show that \(\deg m(x) \) divides \([K : k]\).

We illustrate these results with an extremely classical application. A real number \(\theta \in \mathbb{R} \) is called **constructible** if it can be written in terms of rational numbers using the operations \(+, -, \times, \div\) and \(\sqrt{\cdot} \). Classically, these numbers were studied because the distance between any two points constructed with straightedge and compass is constructible; now we can motivate them by saying they are the numbers which can be computed exactly with a four function calculator.

![Figure: Two ancient mathematical tools](image)

Problem 18.3. Suppose we compute a sequence of real numbers \(\theta_1, \theta_2, \theta_3, \ldots, \theta_N \) where each \(\theta_k \) is either
- a rational number,
- of one of the forms \(\theta_i + \theta_j, \theta_i - \theta_j, \theta_i \theta_j \) or \(\theta_i/\theta_j \) for some \(i, j < k \) or
- of the form \(\sqrt{\theta_j} \) for some \(j < k \).

Show that \([\mathbb{Q}[\theta_1, \theta_2, \ldots, \theta_N] : \mathbb{Q}]\) is a power of 2.

Problem 18.4. Let \(\theta \) be a constructible real number and let \(m(x) \) be its minimal polynomial over \(\mathbb{Q} \). Show that \(\deg m(x) \) is a power of 2.

Problem 18.5. (The impossibility of doubling the cube.) Show that \(\sqrt[3]{2} \) is not constructible.

Problem 18.6. (The impossibility of trisecting the angle) It is well known that a 60° angle is constructible with straightedge and compass. Show, however, that \(\cos 20^\circ \) is not constructible. Hint:

\[
4 \cos^3 20^\circ - 3 \cos 20^\circ = \cos 60^\circ = \frac{1}{2}.
\]