19. Splitting fields

Definition: Let \(k \) be a field, let \(f(x) \) be a polynomial in \(k[x] \) and let \(K \) be an extension field of \(f \). We will say that \(f \) splits in \(K \) if \(f \) factors as a product of linear polynomials in \(K[x] \). We say that \(K \) is a splitting field of \(f \) if \(f \) splits as a product \(c \prod (x - \theta_j) \) in \(K[x] \) and the field \(K \) is generated by \(k \) and by the \(\theta_j \).

For example, if \(k = \mathbb{Q} \) and \(\theta_1, \theta_2, \ldots, \theta_n \) are the roots of \(f(x) \) in \(\mathbb{C} \), then \(\mathbb{Q}[\theta_1, \ldots, \theta_n] \) is a splitting field of \(f(x) \).

Problem 19.1. Let \(k \) be a field and let \(f(x) \) be a polynomial in \(k[x] \). Show that \(f \) has a splitting field. (Please do not use that every field has an algebraic closure. That is a much harder result than this one.)

Problem 19.2. Let
\[
f(x) = (x - \cos \frac{2\pi}{7})(x - \cos \frac{4\pi}{7})(x - \cos \frac{8\pi}{7}) = \frac{1}{8}(8x^3 + 4x^2 - 4x - 1).
\]
I promise, and you may trust me, that \(f(x) \) is irreducible.\(^1\) Let \(K = \mathbb{Q}(\cos \frac{2\pi}{7}) \).

1. Show that \([K : \mathbb{Q}] = 3\).
2. Show that \(f(x) \) splits in \(K \). Hint: Use the double angle formula.
3. Show that there is an automorphism \(\sigma : K \to K \) with \(\sigma(\cos \frac{2\pi}{7}) = \cos \frac{4\pi}{7} \).

Problem 19.3. Let \(L \) be a splitting field for \(x^3 - 2 \) over \(\mathbb{Q} \). Show that \([L : \mathbb{Q}] = 6\). (Hint: At one point, it will be very useful to use the fact that \(\mathbb{Q}[\sqrt[3]{2}] \) is a subfield of \(\mathbb{R} \).)

This is a good time to discuss separable polynomials.

Definition: Let \(k \) be a field and let \(f(x) \) be a polynomial in \(k[x] \). We say \(f \) is separable if \(\text{GCD}(f(x), f'(x)) = 1 \).

Problem 19.4. Let \(k \) be a field, let \(f(x) \) be a polynomial in \(k[x] \) and let \(K \) be a field where \(f \) splits as \(c \prod_{j=1}^{n} (x - \theta_j) \). Show that \(f \) is separable if and only if \(\theta_1, \theta_2, \ldots, \theta_n \) are distinct.

Problem 19.5. Let \(k \) be a field of characteristic zero.

1. Show that a polynomial in \(k[x] \) is separable if and only if it is square free.
2. Show that irreducible polynomials in \(k[x] \) are separable.

\(^1\)In particular, the fact that every field embeds in an algebraically closed field uses the Axiom of Choice, and this problem does not.

\(^2\)The most straightforward way to check this is to use the rational root theorem. The slickest is to note that \(f(x + 1) = \frac{1}{8}(8x^3 + 28x^2 + 28x + 7) \) and apply Eisenstein’s irreducibility theorem.