Problem Set 4: Due Wednesday, February 5

Please see the course website for guidance on collaboration and formatting your problem sets.

Problem 4.1. Let \(1 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 1 \) be a short exact sequence of groups. A right splitting of this sequence is a map \(\rho : C \to B \) such that \(\beta \circ \rho = \text{Id}_C \). Show that, if the sequence \(1 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 1 \) has a right splitting, then \(B \cong A \times C \) for an action of \(A \) on \(C \). Hint: Apply Worksheet Problem 8.6 to the subgroups \(\alpha(A) \) and \(\rho(C) \) of \(B \).

Problem 4.2. Which of the following sequences are left split? Which are right split? (See Problems 3.6 and 4.1)

- (1) \(1 \to C_2 \to C_0 \to C_3 \to 1 \).
- (2) \(1 \to C_2 \to C_4 \to C_2 \to 1 \).
- (3) \(1 \to A_5 \to S_5 \to \{\pm 1\} \to 1 \).
- (4) \(1 \to \text{SL}_3(\mathbb{R}) \to \text{GL}_3(\mathbb{R}) \xrightarrow{\text{det}} \mathbb{R}^\times \to 1 \).

Problem 4.3. Let \(F \) be a field. Let \(\text{GL}_n(F) \) be the group of invertible \(n \times n \) matrices with entries in \(F \) and let \(\text{SL}_n(F) \) be the group of submatrices with determinant 1. The aim of this problem is to describe the abelianization of \(\text{GL}_n(F) \) and \(\text{SL}_n(F) \) in all cases.

For \(1 \leq i \neq j \leq n \) and \(r \in F \), we define \(E_{ij}(r) \) to be the matrix with ones on the diagonal, an \(r \) in position \((i, j) \) and zeroes everywhere else; we call such a matrix an elementary matrix. We showed in Math 593 (and you may use) that the elementary matrices generate \(\text{SL}_n(F) \).

1. Suppose that \(n \geq 3 \). Show that the elementary matrices are in the commutator subgroup of \(\text{SL}_n(F) \). Conclude that the abelianization of \(\text{SL}_n(F) \) is trivial and the abelianization of \(\text{GL}_n(F) \) is \(F^\times \). Hint: First think about matrices of the form \[
\begin{bmatrix}
0 & 1 & * \\
0 & 0 & 1
\end{bmatrix}.
\]
2. Show that the elementary matrices are in the commutator subgroup of \(\text{GL}_2(F) \) for \(\#(F) > 2 \) and in the commutator subgroup of \(\text{SL}_2(F) \) for \(\#(F) > 3 \). Conclude that the abelianization of \(\text{SL}_2(F) \) is trivial and the abelianization of \(\text{GL}_2(F) \) is \(F^\times \) in these cases. Hint: First think about matrices of the form \[
\begin{bmatrix}
0 & * \\
0 & 1
\end{bmatrix}.
\]
3. What are the abelianizations of \(\text{GL}_2(F_2) = \text{SL}_2(F_2) \) and \(\text{SL}_2(F_3) \)?

Problem 4.4. Let \(A \) be an abelian group and let \(\phi : A \to A \) be an automorphism. Let \(\mathbb{Z} \) act on \(A \) by \(k : a \mapsto \phi^k(a) \); by a standard abuse of notation, we will also denote this action by \(\phi \). Let \(G = A \rtimes_{\phi} \mathbb{Z} \). Show that the abelianization of \(G \) is isomorphic to \(A/([\text{Id} - \phi](A)) \times \mathbb{Z} \). In this formula, \(\text{Id} - \phi \) is an additive map \(A \to A \) and we are quotienting by its image.

The remaining problems are not tightly tied to the current material; but many of them will be useful in the future.

Problem 4.5. Let \(G \) be a finite group.

1. Let \(X \) be a finite set with a transitive action of \(G \), and \(|X| > 1 \). Show that there is some \(g \in G \) which fixes no element of \(X \). Hint: What lemma have we proved involving the number of fixed points?
2. Let \(H \subseteq G \) be a proper subgroup of \(G \). Show that there is some conjugacy class \(C \) of \(G \) with \(H \cap C = \emptyset \).

Problem 4.6. Let \(p \) be a prime number. For a positive integer \(n \), let \(v(n) \) be the integer such that \(p \) divides \(n! \) precisely \(v(n) \) times.

1. Write \(n = mp + r \) for \(0 \leq r \leq p - 1 \). Show that \(v(n) = m + v(m) \).
2. Show that \(S_n \) contains a subgroup of order \(p^{v(n)} \). Hint: You might find it a good warm up to do the cases \(n = mp \) for \(m < p \) and \(n = p^2 \) first.

Problem 4.7. Let \(k \) be a finite field with \(q \) elements and let \(1 \leq m \leq n \). Show that the number of \(m \times n \) matrices with entries in \(k \) and rank \(m \) is \(\prod_{j=0}^{m-1}(q^n - q^j) \). (Hint: Induct on \(m \).)

Problem 4.8. Let \(R \) be a ring (not assumed commutative). An element \(x \in R \) is called nilpotent if there is some positive integer \(m \) for which \(x^m = 0 \). A (two-sided) ideal whose every element is nilpotent is called nil.

1. Show that, if \(x \) is nilpotent, then \(1 + x \) is a unit.
2. Let \(N \) be a nil ideal of \(R \). Let \(U = \{1 + x : x \in N\} \). Show that \(U \) is a group under multiplication.