Problem 5.1. Recall that \(Z(G) \) is the center of a group \(G \), and that a central series of \(G \) is a sequence of subgroups \(G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_N \) where \(G_{i+1}/G_i \subseteq Z(G/G_i) \) for all \(i \).

1. The upper (or ascending) central series of \(G \) is defined inductively by \(U_0 = \{ e \} \) and \(U_{k+1} = \pi_k^{-1}(Z(G/U_k)) \), where \(\pi_k \) is the projection \(G \to G/U_k \). Let \(\{ e \} = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \) be a central series with \(G_0 = \{ e \} \). Show that \(G_k \subseteq U_k \).

2. The lower (or descending) central series is defined inductively by \(L^0 = G \) and letting \(L^{k+1} \) be the group generated by all products \(ghg^{-1}h^{-1} \) with \(g \in G \) and \(h \in L^k \). Let \(G = G^0 \triangleright G^1 \triangleright G^2 \triangleright \cdots \) be a central series with \(G^0 = G \) (note that we have reversed the direction of the numbering). Show that \(L^k \subseteq G^k \).

3. Recall that a group \(G \) is called nilpotent if there is a central series \(\{ e \} = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_N = G \). Show that \(G \) is nilpotent, if and only if \(U_k \) is eventually \(G \), if and only if \(L^k \) is eventually \(\{ e \} \).

Problem 5.2. Let \(R \) be a ring (not assumed commutative) and let \(I \) be a two sided ideal of \(R \). We define \(I^m \) to be the two sided ideal generated by all products \(x_1 x_2 \cdots x_m \) for \(x_1, x_2, \ldots, x_m \in I \). We define the ideal \(N \) to be nilpotent if there is a positive integer \(m \) such that \(N^m = \{ 0 \} \). Let \(N \) be a nilpotent ideal and let \(U \) be the group \(\{ 1 + x : x \in N \} \). Show that \(U \) is a nilpotent group.\(^1\)

The next three problems are adapted from QR exams.

Problem 5.3. Let \(G \) be a group where \(g^2 h^2 = h^2 g^2 \) for all \(g \) and \(h \).

1. Let \(N \) be the subgroup \(\langle g^2 \mid g \in G \rangle \). Show that \(N \) is normal.

2. Show that \(G \) is solvable.

Problem 5.4. A group \(G \) is called virtually solvable if \(G \) has a normal subgroup \(N \) such that \(N \) is solvable and \(G/N \) is finite.

1. Show that a subgroup of a virtually solvable group is virtually solvable.

2. Show that a quotient of a virtually solvable group is virtually solvable.

Problem 5.5. Let \(G_1 \) and \(G_2 \) be groups and let \(S \) be a subgroup of \(G_1 \times G_2 \). Let \(H_i \) be the projection of \(S \) onto \(G_i \) and let \(K_i = S \cap G_i \).

1. Show that \(K_i \) is normal in \(H_i \).

2. Show that \(H_1/K_1 \cong H_2/K_2 \).

These problems do not use the current material, but will be useful in the future. Let \(k \) be a field and let \(k[x] \) be the ring of polynomials with coefficients in \(x \). Recall that \(k[x] \) is a PID; you may use this fact freely in these problems.

Problem 5.6. Let \(K \subset L \) be two fields and let \(a(x) \) and \(b(x) \in K[x] \). Let \(g(x) \) be the GCD of \(a \) and \(b \) in \(K[x] \). Show that \(g(x) \) is also the GCD of \(a \) and \(b \) in \(L[x] \).

Problem 5.7. For a polynomial \(f(x) = \sum f_j x^j \in k[x] \), we define the derivative \(f'(x) \) to be \(\sum j f_j x^{j-1} \).

1. For any two polynomials \(f(x) \) and \(g(x) \in k[x] \), show that \((f + g)'(x) = f'(x) + g'(x) \) and \((fg)'(x) = f(x)g'(x) + f'(x)g(x) \). Note that your proof should work for any field \(k \).

For a nonzero polynomial \(f(x) \) and an irreducible polynomial \(p(x) \), let \(m_p(f) \) be the number of times that \(p \) appears in the prime factorization of \(f \).

2. Let \(f \) and \(p \) be as above and suppose that \(m_p(f) > 0 \). Show that, if \(k \) has characteristic zero, then \(m_p(f') = m_p(f) - 1 \).

3. Give an example to show that the above need not be true in nonzero characteristic.

\(^1\)This is the most direct conceptual connection I know between the uses of the word “nilpotent” in ring theory and in group theory. The actual historical origins of the word come from the following related case: Start with \(R \) being \(n \times n \) upper-triangular real matrices, \(N \) being upper-triangular real matrices with 0’s on the diagonal and \(U \) being upper-triangular real matrices with 1’s on the diagonal. Let \(G \) be a Lie subgroup of \(U \), then the Lie algebra \(g \) is a Lie subalgebra of \(N \). The group \(G \) is a nilpotent group, and the Lie algebra \(g \) is a nilpotent Lie algebra. (We have not defined Lie groups, Lie algebras or what it means for a Lie algebra to be nilpotent.)