5. Group actions

Definition: Let G be a group and let X be a set. An action of G on X is a map $*: G \times X \to X$ obeying $(g_1 * g_2) * x = g_1 * (g_2 * x)$ and $e * x = x$.

Depending on context, we may denote $*$ by \cdot, \times, or no symbol at all. This notion of an action can also be called a “left action”; a “right action” is a map $*: X \times G \to X$ obeying $x * (g_2 * g_1) = (x * g_2) * g_1$.

Problem 5.1. Let $G \times X \to X$ be a left action of G on X. Define a map $X \times G \to X$ by $(x, g) \mapsto g^{-1}x$. Show that this is a right action of G on X.

Problem 5.2. Let G act on a set X by the orbit-stabilizer theorem. For $x \in X$, the equilibrium of x is $\{g \in G : g x = x\}$. Show that this is a right action of G on X.

Problem 5.3. With G, X and x as above, show that $\text{Stab}(x)$ is a subgroup of X.

Problem 5.4. Let G, X and x be as above and let $g \in G$. Show that $\text{Stab}(g x) = g \text{Stab}(x) g^{-1}$.

Definition: For G, X and x as above, the orbit of x, written Gx, is $\{g x : g \in G\}$.

Problem 5.5. (The Orbit-Stabilizer theorem) If G is finite, show that $\#(G) = \#(Gx) \#(\text{Stab}(x))$.

The set of orbits of G on X is denoted $G \backslash X$. If we have a right action, we write X / G.

Problem 5.6. (Burnside’s Lemma) Let G be a finite group and let X be a finite set on G acts. Show that $\frac{1}{\#G} \sum_{g \in G} \#\text{Fix}(g) = \#(G \backslash X)$.

Definition: Let G be a group and let H be a subgroup. Let H act on G by $h * g = hg$. The orbits of this action are called the right cosets of H in G. The left cosets are the orbits for the right action $G * H \to G$. The number of cosets of H in G is called the index of H in G and written $[G : H]$.

Problem 5.7. Show that G has a left action on the set G / H of left cosets, such that $g_1 * (g_2 H) = (g_1 * g_2) H$. Show that the stabilizer of the coset $e H$ is H.

Problem 5.8. (Lagrange’s Theorem) Let G be a finite group and let H be a subgroup. Show that $\#(H)$ divides $\#(G)$.

Problem 5.9. Let G be a finite group with $\#(G) = N$. Let $g \in G$ and let the group generated by g have n elements.

1. Show that n divides N.
2. Show that $g^n = 1$.

1 Proved by Ferdinand Georg Frobenius.
2 Proved by Camille Jordan.