5. Group actions

Definition: Let G be a group and let X be a set. An action of G on X is a map $*: G \times X \rightarrow X$ obeying $(g_1 * g_2) \ast x = g_1 \ast (g_2 \ast x)$ and $e \ast x = x$.

Depending on context, we may denote $*$ by \ast, \times, \cdot or no symbol at all. This notion of an action can also be called a “left action”; a “right action” is a map $*: X \times G \rightarrow X$ obeying $x \ast (g_2 \ast g_1) = (x \ast g_2) \ast g_1$.

Problem 5.1. Let $G \times X \rightarrow X$ be a left action of G on X. Define a map $X \times G \rightarrow X$ by $(x, g) \mapsto g^{-1} \ast x$. Show that this is a right action of G on X.

Problem 5.2. Let S_X be the group of bijections $X \rightarrow X$, with the group operation of composition. Show that an action of G on X is the same as a group homomorphism $G \rightarrow S_X$.

Definition: Let G be a group which acts on a set X. For $x \in X$, the stabilizer $\text{Stab}(x)$ of x is \{ $g \in G : g \ast x = x$ \}. For $g \in G$, the fixed points $\text{Fix}(g)$ of g are \{ $x \in X : g \ast x = x$ \}.

Problem 5.3. With G, X and x as above, show that $\text{Stab}(x)$ is a subgroup of X.

Problem 5.4. Let G, X and x be as above and let $g \in G$. Show that $\text{Stab}(gx) = g \ast \text{Stab}(x)g^{-1}$.

Definition: For G, X and x as above, the orbit of x, written Gx, is \{ $gx : g \in G$ \}.

Problem 5.5. (*The Orbit-Stabilizer theorem*) If G is finite, show that $\#(G) = \#(Gx) \#(\text{Stab}(x))$.

The set of orbits of G on X is denoted $G \backslash X$. If we have a right action, we write X/G.

Problem 5.6. (*Burnside’s Lemma*) Let G be a finite group and let X be a finite set on which G acts. Show that

$$
\frac{1}{\#G} \sum_{g \in G} \#\text{Fix}(g) = \#(G \backslash X).
$$

Definition: Let G be a group and let H be a subgroup. Let H act on G by $h \ast g = hg$. The orbits of this action are called the right cosets of H in G. The left cosets are the orbits for the right action $G \ast H \rightarrow G$. The number of cosets of H in G is called the index of H in G and written $[G : H]$.

Problem 5.7. Show that G has a left action on the set G/H of left cosets, such that $g_1 \ast (g_2 H) = (g_1 \ast g_2)H$. Show that the stabilizer of the coset eH is H.

Problem 5.8. (*Lagrange’s Theorem*) Let G be a finite group and let H be a subgroup. Show that $\#(H)$ divides $\#(G)$.

Problem 5.9. Let G be a finite group with $\#(G) = N$. Let $g \in G$ and let the group generated by g have n elements.

1. Show that n divides N.
2. Show that $g^N = 1$.

1Proved by Ferdinand Georg Frobenius.
2Proved by Camille Jordan.