Problem 7.1. Let K and L be fields and let $\phi : K \to L$ be a ring homomorphism (this includes the condition that $\phi(1) = 1$). Show that ϕ is injective.

Problem 7.2. Let A be a finite abelian group such that, for every integer d, A contains at most d solutions to $a^d = 1$. Show that A is cyclic. You may use the classification of finite abelian groups.

Problem 7.3. Let n be a positive integer. Let L be a field in which $n \neq 0$ and where the polynomial $x^n - 1$ factors into linear factors $x^n - 1 = \prod(x - \theta_j)$. Then L contains n roots of unity.

1. Show that the θ_j are distinct.
2. Show that the θ_j form a cyclic subgroup of L^\times. (Hint: The most efficient route is problem 7.2.) A generator of this group is called a primitive n-th root of unity in L.
3. Let σ be an automorphism of L. Show that there is some integer a, relatively prime to n, such that $\sigma(\theta) = \theta^a$ for each root θ of $x^n - 1$.

Problem 7.4. Let K be a field of characteristic p. Let a be an element of K such that the polynomial $x^p - x - a$ is irreducible over k, and let $L = K[t]/(t^p - t - a)K[t]$.

1. Show that there are b and $c \in K$ such that $L \cong K[x]/(x^2 + bx + c)K[x]$.
2. Suppose that K does not have characteristic 2. Show that $L \cong K[\sqrt{b^2 - 4c}]$.

Problem 7.5. Let L/K be a field extension of degree 2 (meaning that L has dimension 2 as a K-vector space).

1. Show that there are b and $c \in K$ such that $L \cong K[x]/(x^2 + bx + c)K[x]$.
2. Suppose that K does not have characteristic 2. Show that $L \cong K[\sqrt{b^2 - 4c}]$.

Problem 7.6. (Reduced Row Echelon form) Let M be a $d \times n$ matrix with entries in a field k. Let $1 \leq j_1 < j_2 < \cdots < j_d \leq n$. We will say that M is in reduced row echelon form with pivots in columns j_1, j_2, \ldots, j_d if

$$M_{rj} = \begin{cases} 1 & j = j_r \\ 0 & j = j_s \text{ for } s \neq r \\ 0 & j < j_r \end{cases}$$

We say that M is in reduced row echelon form if it is in reduced row echelon for some set of columns j_1, j_2, \ldots, j_d. The aim of this problem is to check that every d-dimensional subspace of k^n is the row span of exactly one $d \times n$ matrix in reduced row echelon form.

1. Let M be in reduced row echelon form with pivots in columns j_1, j_2, \ldots, j_d and let $V \subseteq k^n$ be its row span. Show how to recover the j_1, j_2, \ldots, j_d from the data of how V intersects various subspaces of k^n.
2. Let V be a d-dimensional subspace of k^n. Show that there is at most one matrix M in reduced row echelon form with row span V.
3. Let V be a d-dimensional subspace of k^n. Show that there is at least one matrix M in reduced row echelon form with row span V.

Problem 7.7. Let L be a field, let H be a group of automorphisms of L and let F be the elements of L fixed by H. Suppose that V is an L-vector subspace of L^n and that H takes V to itself. Show that V has a basis whose elements lie in F^n. (Hint: Look at Problem 7.4.)

Problem 7.8. Let K be a field of characteristic p. For $\theta \in K$, define $F(\theta) = \theta^p$ (this is called the Frobenius map).

1. Show that $F : K \to K$ is a field homomorphism.
2. Show that F is injective.
3. If K is finite, show that F is bijective.