Definition: A group G is called simple if G has precisely two normal subgroups, G and $\{1\}$.

We remark that the trivial group is not simple, since it only has one normal subgroup.

Problem 7.1. Prove or disprove: Let G be simple and let H be any group. For every group homomorphism $\phi : G \to H$, either ϕ is injective or else ϕ is trivial.

Problem 7.2. Prove or disprove: Let G be any group and let H be simple. For any group homomorphism $\phi : G \to H$, either ϕ is surjective or else ϕ is trivial.

Problem 7.3. Let p be a prime. Show that C_p (the cyclic group of order p) is simple.

Problem 7.4. In this problem we will show that A_n is simple, for $n \geq 5$. Let N be a nontrivial normal subgroup of A_n. Let g be a non-trivial element of N.

(1) Show that there is some 3-cycle (ijk) in A_n which does not commute with g.

We set $h = g(ijk)g^{-1}(ijk)^{-1}$.

(2) Show that $h \in N$.

(3) Show that h has one of the following cycle structures: $(abc)(def)$, (ab, cde), $(ab)(cd)$, (abc).

(4) Show that N contains a 3-cycle. In the case where h has cycle type $(ab)(cd)$, you’ll need to use that $n \geq 5$. This part is a nuisance, and you may want to skip ahead and come back to it.

(5) Show that $N = A_n$.

After C_p and A_n, the most important simple groups are the projective special linear groups. Let F be a field. The group $\text{SL}_n(F)$ is the group of $n \times n$ matrices with entries in F and determinant 1. Let $Z \subset \text{SL}_n(F)$ be $\{\zeta \text{Id}_n : \zeta \in F \text{ with } \zeta^n = 1\}$. The projective special linear group $\text{PSL}_n(F)$ is defined to be $\text{SL}_n(F)/Z$. The group $\text{PSL}_n(F)$ is simple, except in the cases of $\text{PSL}_2(\mathbb{F}_2)$ (which is isomorphic to S_3) and $\text{PSL}_2(\mathbb{F}_3)$ (which is isomorphic to A_4). The proof that $\text{PSL}_n(F)$ has a lot of good ideas in it, but it is too long to make a worksheet problem; it might appear as a bonus lecture.