Problem 8.1. Let \(n \) be a positive integer and let \(K \) be a field in which \(n \neq 0 \). Let \(c \) be a nonzero element of \(K \) and let \(L \) be a splitting field of \(x^n - c \).

1. Show that the polynomial \(x^n - 1 \) splits in \(L \).

Let \(\zeta \) generate the cyclic group of roots of \(x^n - 1 \) in \(L \). Let \(\gamma \) denote one of the roots of \(x^n - c \) in \(L \).

2. Show that \(K(\zeta) \) is a splitting field for \(x^n - 1 \) and \(\text{Aut}(K(\zeta)/K) \) is isomorphic to a subgroup of the unit group \((\mathbb{Z}/n\mathbb{Z})^\times\).

3. Let \(\sigma \in \text{Aut}(L/K) \). Show that there are integers \(a \in (\mathbb{Z}/n\mathbb{Z})^\times \) and \(b \in \mathbb{Z}/n\mathbb{Z} \) such that \(\sigma(\zeta) = \zeta^a \) and \(\sigma(\gamma) = \zeta^b\gamma \).

4. Show that \(\text{Aut}(L/K) \) is isomorphic to a subgroup of \((\mathbb{Z}/n\mathbb{Z})^\times \ltimes \mathbb{Z}/n\mathbb{Z}\).

Problem 8.2. Let \(K \) have characteristic not 2. Let \(f(x) = x^4 + bx^2 + c \) and let \(L \) be a splitting field of \(f \). We assume that \(f \) is separable, and we number the roots of \(f \) so that \(\theta_3 = -\theta_1 \) and \(\theta_4 = -\theta_2 \).

1. Show that \(\text{Aut}(L/K) \) is contained in the group of symmetries of the square shown below:

\[
\begin{array}{c|c|c}
1 & 2 & \hline \\
4 & \hline & 3
\end{array}
\]

2. Check that \((\theta_1\theta_2)^2 = c \) and \((\theta_1^2 - \theta_2^2)^2 = b^2 - 4c\).

3. Show that \(\text{Aut}(L/K) \) in contained in the subgroup \((13), (24)\) of \(S_4 \) if and only if \(b^2 - 4c \) is square in \(K \).

4. Show that \(\text{Aut}(L/K) \) in contained in the subgroup \((12)(34), (14)(23)\) of \(S_4 \) if and only if \(c \) is square in \(K \).

5. Show that \(\text{Aut}(L/K) \) in contained in the subgroup \((1234)\) of \(S_4 \) if and only if \(c(b^2 - 4c) \) is square in \(K \).

Problem 8.3. Let \(L/K \) be a field extension of degree \(n \). For \(\theta \in L \), let \(m_\theta \) be the map \(x \mapsto \theta x \) from \(L \) to \(L \). Let \(f(x) = x^d + f_{d-1}x^{d-1} + \cdots + f_0 \) be the minimal polynomial of \(\theta \) over \(K \).

1. Show that \(m_\theta \) is a \(K \)-linear map.

2. Express the minimal polynomial and characteristic polynomial of \(m_\theta \) in terms of \(f(x) \), \(d \) and \(n \).

3. The trace \(T_{L/K}(\theta) \) is defined to be the trace of the linear map \(m_\theta \). Express \(T_{L/K}(\theta) \) in terms of the \(f_j \), \(d \) and \(n \).

4. The norm \(N_{L/K}(\theta) \) is defined to be the determinant of the linear map \(m_\theta \). Express \(N_{L/K}(\theta) \) in terms of the \(f_j \), \(d \) and \(n \).

Problem 8.4. Let \(p \) be a prime and let \(q = p^n \).

1. Let \(k \) be a field of characteristic \(p \). Show that the roots of \(x^q = x \) in \(k \) form a subfield of \(k \).

2. Define \(\mathbb{F}_q \) to be the splitting field of \(x^q - x \) over \(\mathbb{Z}/p\mathbb{Z} \). Show that \(\mathbb{F}_q \) is a field with \(q \) elements.

3. Let \(F \) be any field with \(q \) elements. Show that \(F \) is a splitting field for \(x^q - x \) over \(\mathbb{F}_p \), and conclude that \(F \cong \mathbb{F}_q \).