B. Finite nilpotent groups are products of \(p \)-groups.

Today’s goal is to show:

Theorem: Let \(G \) be a finite group. Then \(G \) is nilpotent if and only if it is a direct product of \(p \)-groups.

Problem B.1. Show the easy direction: A direct product of \(p \)-groups is nilpotent.

From now on, let \(G \) be a finite nilpotent group with \(\#(G) = \prod p_i^{k_i} \). We will be proving, by induction on \(\#(G) \), that \(G \) is the direct product of its Sylow subgroups.

Problem B.2. Show that \(G \) has a central subgroup \(Z \) which is cyclic of prime order.

Let \(G' = G/Z \), so we have a short exact sequence \(1 \to Z \to G \to G' \to 1 \). Let \(P_i' \) be a \(p_i \)-Sylow of \(G' \).

By induction, \(G' = \prod_i P_i' \). We number the prime factors of \(\#(G) \) such that \(\#(Z) = p_1 \). We analyze the Sylows of \(G \), starting with the \(p_1 \)-Sylow, and then the others.

Problem B.3.
1. Show that \(\beta^{-1}(P_1') \) is normal in \(G \).
2. Show that \(\beta^{-1}(P_1') \) is a \(p_{p_1} \)-Sylow of \(G \).

Problem B.4. Now, let \(i > 1 \). We have a short exact sequence \(1 \to Z \to \beta^{-1}(P_i') \to P_i' \to 1 \).

1. Show that \(\beta^{-1}(P_i') \) is normal in \(G \).
2. Show that the \(p_i \)-Sylow of \(\beta^{-1}(P_i') \) is also a \(p_i \)-Sylow of \(G \).
3. Show that \(\beta^{-1}(P_i') \cong Z \times P_i' \) (here is where you use Schur-Zassenhaus).
4. Show that the \(p_i \)-Sylow of \(\beta^{-1}(P_i') \) is a characteristic subgroup of \(\beta^{-1}(P_i') \).
5. Show that the \(p_i \)-Sylow of \(G \) is normal in \(G \).

We have now shown that every Sylow subgroup of \(G \) is normal in \(G \).

Problem B.5. Conclude by proving that \(G \) is the direct product of its Sylow subgroups.