C. SCHUR-ZASSENHAUS, THE ABELIAN CASE

The aim of the next two worksheets will be to prove:

Theorem Schur-Zassenhaus: Let \(1 \to A \to B \to C \to 1\) be a short exact sequence of finite groups where \(\gcd(\#(A), \#(C)) = 1\). Then this sequence is right split, so \(B \cong A \rtimes C\).

This is the start of an answer to the question “how are groups assembled out of smaller groups”: When you put groups of relatively prime order together, you just get semidirect products.

Today, we’ll be proving the case where \(A\) is abelian. Here is our main result:

Theorem: Let \(A\) be an abelian group, \(C\) a finite group of size \(n\), and suppose that \(a \mapsto a^n\) is a bijection from \(A\) to \(A\). Let \(1 \to A \to B \to C \to 1\) be a short exact sequence. Then this sequence is right split.

Problem C.1. Show that, if \(A\) is a finite abelian group and \(n\) an integer such that \(\gcd(\#(A), n) = 1\), then \(a \mapsto a^n\) is a bijection. Thus, the above Theorem does imply the Schur-Zassenhaus theorem for \(A\) abelian.

From now on, let \(A\) be an abelian group, let \(C\) be a finite group and let \(1 \to A \to B \xrightarrow{\beta} C \to 1\) be a short exact sequence. We abbreviate \(\#(C)\) to \(n\); we will not introduce the hypothesis on \(a \mapsto a^n\) until later. We’ll identify \(A\) with its image in \(B\).

Let \(S\) be the set of right inverses of \(\beta\), meaning maps \(\sigma : C \to B\) such that \(\beta(\sigma(c)) = c\). We emphasize that \(\sigma\) is not required to be compatible with the group multiplication in any way. Let \(B\) act on \(S\) by \((b\sigma)(c) = b\sigma(\beta(b)^{-1}c)\).

Problem C.2. Check that this is an action.

Let \(\sigma_1\) and \(\sigma_2\) ∈ \(S\). Set \(d(\sigma_1, \sigma_2) = \prod_{c \in C} (\sigma_1(c)\sigma_2(c)^{-1})\).

We don’t have to specify the order of the product, because every term is in \(A\).

Problem C.3. Show that \(d(\sigma_1, \sigma_2)d(\sigma_2, \sigma_3) = d(\sigma_1, \sigma_3)\) and \(d(\sigma_1, \sigma_2) = d(\sigma_2, \sigma_1)^{-1}\).

Problem C.4. For the action of \(B\) on \(S\) described above, check that \(d(b\sigma_1, b\sigma_2) = bd(\sigma_1, \sigma_2)b^{-1}\).

Define \(\sigma_1 \equiv \sigma_2\) if \(d(\sigma_1, \sigma_2) = 1\).

Problem C.5. Check that \(\equiv\) is an equivalence relation.

Define \(X\) to be the set of equivalence classes of \(S\) module the relation \(\equiv\).

Problem C.6. Check that the action of \(B\) on \(S\) descends to an action of \(B\) on \(X\).

Now, we impose the condition that \(a \mapsto a^n\) is an automorphism of \(A\).

Problem C.7. Show that the subgroup \(A\) of \(B\) acts on \(X\) with a single orbit and trivial stabilizers.

The following problem was on the problem sets; check that everyone knows how to do it:

Problem C.8. You have shown that \(B\) acts on \(X\), and that the restriction of this action to \(A\) has a single orbit and trivial stabilizers. Explain why this means that \(1 \to A \to B \to C \to 1\) is right split.

1This approach is closely based on that of Kurzweil and Stellmacher, *The Theory of Finite Groups*, Chapter 3.3, Springer-Verlag (2004).