Recall:

Theorem/Definition Let L/K be a field extension of finite degree. The following are equivalent:

1. We have $\# \text{Aut}(L/K) = [L : K]$.
2. The fixed field of $\text{Aut}(L/K)$ is K.
3. For every $\theta \in L$, the minimal polynomial of θ over K is separable and splits in L.
4. L is the splitting field of a separable polynomial $f(x) \in K[x]$.

A field extension L/K which satisfies these equivalent definitions is called **Galois**.

Given a subfield F with $K \subseteq F \subseteq L$, we write $\text{Stab}(F)$ for the subgroup of $\text{Gal}(L/K)$ fixing F; given a subgroup H of $\text{Gal}(L/K)$, we write $\text{Fix}(H)$ for the subfield of L fixed by H. Our next main goal will be to show:

The fundamental Theorem of Galois theory Let L/K be a Galois extension with Galois group G. The maps Stab and Fix are inverse bijections between the set of subgroups of G and the set of intermediate fields F with $K \subseteq F \subseteq L$. Moreover, if $F_1 \subseteq F_2$, then $\text{Stab}(F_1) \supseteq \text{Stab}(F_2)$ and $[\text{Stab}(F_1) : \text{Stab}(F_2)] = [F_2 : F_1]$. If $H_1 \subseteq H_2$ then $\text{Fix}(H_1) \supseteq \text{Fix}(H_2)$ and $[\text{Fix}(H_1) : \text{Fix}(H_2)] = [H_2 : H_1]$.

We start by proving some basic results about Fix and Stab.

Problem E.1.

1. Show that, if $F_1 \subseteq F_2$ then $\text{Stab}(F_1) \supseteq \text{Stab}(F_2)$.
2. Show that, if $H_1 \subseteq H_2$ then $\text{Fix}(H_1) \supseteq \text{Fix}(H_2)$.

Problem E.2.

1. Show that Stab(Fix(H)) $\supseteq H$.
2. Show that Fix(Stab(F)) $\supseteq F$.

The Fundamental Theorem tells us that both of the \supseteq’s in Problem E.2 are actually equality, but we don’t know that yet.

We now give examples. Here is a table of the subgroups of S_3:

```
S3
/|\
/ \|\
A3 ⟨(12)⟩ ⟨(13)⟩ ⟨(23)⟩
/ \|\{|e|}
```

Problem E.3. Let $L = \mathbb{Q}(x_1, x_2, x_3)$, let S_3 act on L by permuting the variables and let $K = \text{Fix}(S_3)$. Describe the subfield of L fixed by each of the subgroups of S_3.

Problem E.4. Let L be the splitting field of $x^3 - 2$ over \mathbb{Q}. We number the roots of $x^3 - 2$ as $\sqrt[3]{2}$, $\omega \sqrt[3]{2}$ and $\omega^2 \sqrt[3]{2}$, where ω is a primitive cube root of 1. Described the subfield of L fixed by each of the subgroups of S_3.

Now we prove the theorem!

Problem E.5. Both parts of this problem are things you already did, your job is just to remember when you did them.

1. Let L/K be a Galois extension. Let F be a field with $K \subseteq F \subseteq L$. Show that $|\text{Stab}(F)| = [L : F]$.
2. Let L/K be a Galois extension. Let H be a subgroup of $\text{Gal}(L/F)$. Show that $[L : \text{Fix}(H)] = |H|$.

Problem E.6. Prove that the maps Fix and Stab in the Fundamental Theorem are mutually inverse.

Problem E.7. Check the remaining claims of the Fundamental Theorem.